Nous présentons ici un protocole permettant d’effectuer une imagerie calcique à deux photons dans le cerveau antérieur dorsal du poisson-zèbre adulte.
Le poisson-zèbre adulte (Danio rerio) présente un riche répertoire de comportements pour l’étude des fonctions cognitives. Ils ont également un cerveau miniature qui peut être utilisé pour mesurer les activités dans les régions du cerveau grâce à des méthodes d’imagerie optique. Cependant, les rapports sur l’enregistrement de l’activité cérébrale chez les poissons-zèbres adultes ont été rares. La présente étude décrit les procédures permettant d’effectuer une imagerie calcique à deux photons dans le cerveau antérieur dorsal du poisson-zèbre adulte. Nous nous concentrons sur les mesures à prendre pour empêcher les poissons-zèbres adultes de bouger la tête, ce qui offre une stabilité qui permet l’imagerie par balayage laser de l’activité cérébrale. Les animaux dont la tête est attachée peuvent bouger librement les parties de leur corps et respirer sans aide. La procédure vise à raccourcir la durée de la chirurgie d’appuie-tête, à minimiser les mouvements du cerveau et à maximiser le nombre de neurones enregistrés. Une configuration permettant de présenter un environnement visuel immersif pendant l’imagerie calcique est également décrite ici, ce qui peut être utilisé pour étudier les corrélats neuronaux sous-jacents aux comportements déclenchés visuellement.
L’imagerie par fluorescence de calcium avec des indicateurs génétiquement codés ou des colorants synthétiques a été une méthode puissante pour mesurer l’activité neuronale chez les animaux qui se comportent, y compris les primates non humains, les rongeurs, les oiseaux et les insectes1. L’activité de centaines de cellules, jusqu’à environ 800 μm sous la surface du cerveau, peut être mesurée simultanément à l’aide de l’imagerie multiphotonique 2,3. L’activité de types cellulaires spécifiques peut également être mesurée en exprimant des indicateurs calciques dans des populations neuronales génétiquement définies. L’application de la méthode d’imagerie à des modèles de petits vertébrés ouvre de nouvelles possibilités dans le domaine du calcul neuronal à travers les régions du cerveau.
Le poisson-zèbre est un système modèle largement utilisé dans la recherche en neurosciences. Les larves de poisson-zèbre environ 6 jours après la fécondation ont été utilisées pour l’imagerie calcique en raison de leur cerveau miniature et de leur corps transparent4. Les poissons-zèbres juvéniles (âgés de 3 à 4 semaines) sont également utilisés pour étudier les mécanismes neuronaux sous-jacents aux voies sensorimotrices 5,6. Cependant, le niveau de performance maximal pour les comportements complexes, y compris l’apprentissage associatif et les comportements sociaux, est atteint à un âge plus avancé de 7,8 ans. Ainsi, un protocole fiable est nécessaire pour étudier de multiples fonctions cognitives dans le cerveau des poissons-zèbres adultes à l’aide de méthodes d’imagerie. Alors que les larves de poisson-zèbre et les poissons-zèbres juvéniles peuvent être intégrés dans l’agarose pour l’imagerie in vivo, les poissons-zèbres adultes âgés de 2 mois ou plus souffrent d’hypoxie dans de telles conditions et sont physiquement trop forts pour être retenus par l’agarose. Par conséquent, une intervention chirurgicale est nécessaire pour stabiliser le cerveau et permettre à l’animal de respirer librement par les branchies.
Ici, nous décrivons un protocole d’appuie-tête qui implique une nouvelle conception d’une seule barre de tête. Le temps de chirurgie réduit de 25 min est deux fois plus rapide que la méthode précédente9. Nous décrivons également la conception de la chambre d’enregistrement (cuve semi-hexagonale), de la scène principale et d’un mécanisme de verrouillage rapide pour combiner les deux parties9. Enfin, la configuration permettant de présenter un stimulus visuel immersif pour étudier l’activité cérébrale et les comportements déclenchés visuellement est également décrite. Dans l’ensemble, les procédures décrites ici peuvent être utilisées pour effectuer une imagerie calcique à deux photons dans des populations cellulaires génétiquement définies chez un poisson-zèbre adulte à tête retenue, ce qui permet d’étudier les activités cérébrales au cours de divers paradigmes comportementaux.
Ici, nous décrivons un protocole détaillé pour retenir la tête du poisson-zèbre adulte pour l’imagerie calcique à deux photons. Il y a deux étapes essentielles pour obtenir un appuie-tête suffisamment stable pour l’imagerie par balayage laser. Tout d’abord, la barre de tête doit être collée aux sites de fixation spécifiques des crânes. D’autres parties du crâne sont souvent trop minces pour assurer une stabilité mécanique et peuvent même être fracturées lors de mouvements corporels importants. …
The authors have nothing to disclose.
Ce travail a été soutenu par l’Institut de biologie moléculaire, l’Academia Sinica et le Conseil national de la science et de la technologie de Taïwan. L’atelier d’usinage de l’Institut de physique de l’Academia Sinica a contribué à la fabrication de pièces conçues sur mesure. Nous tenons également à remercier P. Argast (Institut Friedrich Miescher pour la recherche biomédicale, Bâle, Suisse) pour la conception du mécanisme de verrouillage rapide de la scène de tête.
Acquisition card | MBF Bioscience | Vidrio vDAQ | Microscope |
Back-projection film | Kimoto | Diland screen – GSK | present visual stimulus |
Band-pass filter (510/80 nm) | Chroma | ET510/80m | Microscope |
Base plate for the semi-hexagonal tank | custom made | see supplemental files | recording chamber |
Camera filter (<875 nm) | Edmund optics | #86-106 | Behavior recording |
Camera filter (>700 nm) | Edmund optics | #43-949 | Behavior recording |
Camera lens | Thorlabs | MVL50M23 | Behavior recording |
Chameleon Vision-S | Coherent | Vision-S | Laser |
Circular plate for the head stage | custom made | see supplemental files | recording chamber |
Controller for piezo actuator | Physik Instrumente | E-665. CR | Microscope |
Current amplifier | Thorlabs | TIA60 | Microscope |
Elitedent Q-6 | Rolence Enterprise | Q-6 | Surgery: UV lamp |
Emission Filter 510/80 nm | Chroma | ET510/80m | Microscope |
Head bar | custom made | see supplemental files | recording chamber |
Infrared light | Thorlabs | M810L3 | Behavior recording |
LED projector | AAXA | P2B LED Pico Projector | present visual stimulus |
Moist paper tissue (Kimwipe) | Kimtech Science | 34155 | Surgery: moist paper tissue |
Motorized XY sample stage | Zaber | X-LRM050 | Microscope |
Neutral Density Filters (50% Transmission) | Thorlabs | NE203B | present visual stimulus |
Ø1/2" Post Holder | ThorLabs | PH1.5V | Surgery: hollow tube for cannon |
Ø1/2" Stainless Steel Optical Post | ThorLabs | TR150/M | Surgery: fish loading module |
Objective lens 16x, 0.8NA | Nikon | CF175 | Microscope |
Oil-based modeling clay | Ly Hsin Clay | C4086 | Surgery: head bar holder |
Optical adhesive | Norland Products | NOA68 | Surgery: UV curable glue |
Photomultiplier tube | Hamamatsu | H11706P-40 | Microscope |
Piezo actuator | Physik Instrumente | P-725.4CA PIFOC | Microscope |
Pockels Cell | Conoptics | M350-80-LA-BK-02 | Microscope |
Red Wratten filter (> 600 nm) | Edmund optics | #53-699 | present visual stimulus |
Resonant-Galvo Scan System | INSS | RGE-02 | Microscope |
Right-Angle Clamp for Ø1/2" Post | ThorLabs | RA90/M | Surgery: fish loading module |
Rotating Clamp for Ø1/2" Post | ThorLabs | SWC/M | Surgery: fish loading module |
ScanImage | MBF Bioscience | Basic version | Microscope |
Semi-hexagonal tank | custom made | see supplemental files | recording chamber |
Super-Bond C&B Kit | Sun Medical Co. | Super-Bond C&B | Surgery: dental cement |
Tricaine methanesulfonate | Sigma Aldrich | E10521 | Surgery: anesthetic |
USB Camera | FLIR | BFS-U3-13Y3M-C | Behavior recording |
Vetbond | 3M | 1469SB | Surgery: tissue glue |