Este protocolo detalla el procedimiento para obtener imágenes de las respuestas de calcio en el colículo superior (SC) de ratones despiertos, incluida la obtención de imágenes de la actividad de una sola neurona con microscopía de dos fotones mientras se deja la corteza intacta en ratones de tipo salvaje, y la obtención de imágenes de todo el SC con microscopía de campo amplio en ratones mutantes de corteza parcial.
El colículo superior (SC), una estructura evolutivamente conservada del mesencéfalo en todos los vertebrados, es el centro visual más sofisticado antes de la aparición de la corteza cerebral. Recibe entradas directas de ~ 30 tipos de células ganglionares de la retina (RGC), cada una de las cuales codifica una característica visual específica. Sigue siendo difícil de entender si el SC simplemente hereda las características de la retina o si se produce un procesamiento adicional y potencialmente de novo en el SC. Para revelar la codificación neuronal de la información visual en el SC, proporcionamos aquí un protocolo detallado para registrar ópticamente las respuestas visuales con dos métodos complementarios en ratones despiertos. Un método utiliza la microscopía de dos fotones para obtener imágenes de la actividad del calcio con una resolución de una sola célula sin ablacionar la corteza superpuesta, mientras que el otro utiliza la microscopía de campo amplio para obtener imágenes de todo el SC de un ratón mutante cuya corteza está en gran parte subdesarrollada. Este protocolo detalla estos dos métodos, incluida la preparación de animales, la inyección viral, la implantación de la placa de cabeza, la implantación del tapón, la adquisición de datos y el análisis de datos. Los resultados representativos muestran que las imágenes de calcio de dos fotones revelan respuestas neuronales evocadas visualmente a una resolución de una sola célula, y las imágenes de calcio de campo amplio revelan actividad neuronal en todo el SC. Al combinar estos dos métodos, se puede revelar la codificación neuronal en el SC a diferentes escalas, y dicha combinación también se puede aplicar a otras regiones del cerebro.
El colículo superior (SC) es un centro visual importante en todos los vertebrados. En los mamíferos, recibe información directa de la retina y la corteza visual1. Si bien el registro óptico se ha aplicado ampliamente a la corteza 2,3,4,5, su aplicación en el SC se ve obstaculizada por accesos ópticos deficientes 6,7,8,9,10,11,12,13,14,15,16,17 ,18,19. El objetivo de este protocolo es proporcionar detalles sobre dos métodos complementarios para el registro óptico de la actividad neuronal en el SC.
El SC se encuentra debajo de la corteza y el seno transverso, lo que limita el acceso óptico a las neuronas coliares. Un enfoque para superar esta limitación es aspirar la corteza suprayacente y exponer el SCanterolateral 7,9,10,13,14,19. Sin embargo, debido a que el SC recibe entradas corticales, tal operación podría afectar la forma en que las neuronas SC responden a los estímulos visuales. Para superar esta limitación, detallamos aquí un protocolo alternativo para obtener imágenes de la capa superficial del SC posterior-medial con un tapón de silicio, dejando intacta la corteza 8,11. Específicamente, para lograr la resolución de una sola célula, aplicamos microscopía de dos fotones para obtener imágenes de las respuestas de calcio en el SC posterior-medial de ratones de tipo salvaje. Además, para lograr una amplia cobertura, aplicamos microscopía de campo amplio para obtener imágenes de todo el SC de un ratón mutante cuya corteza posterior no se ha desarrollado20.
Los dos métodos descritos en este protocolo son complementarios entre sí. Las imágenes de calcio de dos fotones sin ablar la corteza son apropiadas para registrar la actividad neuronal a una resolución de una sola célula con entradas corticales intactas. Las imágenes de calcio de campo amplio son apropiadas para registrar la actividad neuronal en todo el SC al tiempo que sacrifican la resolución espacial.
Pasos críticos en el protocolo
El paso más crítico es la craneotomía en los pasos 5.2 y 5.3. En primer lugar, el hueso a 0,5 mm posterior a la lambda es grueso y tiene vasos sanguíneos en su interior, lo que puede causar sangrado durante el proceso de perforación. Se debe preparar una espuma de gel adecuada para detener el sangrado. En segundo lugar, existe una buena probabilidad de angiorrexis cuando se extirpa el hueso justo por encima del seno transverso. Para la resolución de problemas, un …
The authors have nothing to disclose.
Este trabajo cuenta con el apoyo de la Fundación Nacional de Ciencias Naturales de China (32271060). Y.-t.L. diseñó la investigación, realizó el experimento, analizó los datos y escribió el manuscrito. Z.L. y R.W. realizaron el experimento.
16x objective | Nikon | ||
50-mm lens | Computar | M5018-MP2 | |
5-mm coverslip | Warner instruments | CS-5R | |
bandpass filter | Chroma Technology | HQ575/250 m-2p | |
butyl cyanoacrylate | Vetbond, World Precision Instruments | ||
camera for monitoring pupil | FLIR | BFS-U3-04S2M-CS | |
camera for widefield imaging | Basler | acA2000-165µm | |
corona treater | Electro-Technic Products | BD-20AC | |
dichroic | Chroma Technology | T600/200dcrb | |
galvanometers | Cambridge Technology | ||
glass bead sterilizer | RWD | RS1502 | |
microdrill | RWD | 78001 | |
micromanipulator | Sutter Instruments | QUAD | |
photomultiplier tube | Hamamatsu | R3896 | |
rotory encoder | USdigital | MA3-A10-125-N | |
self-curing dental adhesive resin cement | SuperBond C&B, Sun Medical Co, Ltd. Moriyama, Japan | ||
thermostatic heating pad | RWD | 69020 | |
Ti:Sapphire laser | Spectra-Physics | Mai Tai HP DeepSee | |
translucent silicone adhesive | Kwik-Sil, World Precision Instruments | ||
treadmill | Xinglin Biology | ||
Virus Strains | |||
rAAV2/9-hsyn-Gcamp6m | Vector Core at Chinese Institute for Brain Research, Beijing | ||
Animals | |||
C57BL/6J wild type | Laboratory Animal Resource Center at Chinese Institute for Brain Research, Beijing | ||
Emx1-Cre | The Jackson Laboratory | 5628 | |
Pals1flox/wt | Christopher A. Walsh Lab | ||
Software | |||
ImageJ | NIH Image | ||
Labview | National Instruments | ||
MATLAB | Mathworks |