In diesem Artikel wird ein Open-Source-Algorithmus zur digitalen Bildkorrelationsalgorithmus zur Messung lokaler 2D-Gewebestämme in Sehnenexplantaten beschrieben. Die Genauigkeit der Technik wurde mit mehreren Techniken validiert und steht der Öffentlichkeit zur Verfügung.
Es besteht ein erhebliches wissenschaftliches Interesse daran, die Stämme zu verstehen, denen Sehnenzellen in situ ausgesetzt sind, und wie diese Stämme den Gewebeumbau beeinflussen. Basierend auf diesem Interesse wurden verschiedene Analysetechniken entwickelt, um lokale Gewebestämme innerhalb von Sehnenexplantaten während der Belastung zu messen. In mehreren Fällen wurde jedoch nicht über die Genauigkeit und Empfindlichkeit dieser Techniken berichtet, und keiner der Algorithmen ist öffentlich verfügbar. Dies hat die breitere Messung lokaler Gewebestämme in Sehnenexplantaten erschwert. Ziel dieser Arbeit war es daher, ein validiertes Analysewerkzeug zur Messung lokaler Gewebestämme in Sehnenexplantaten zu entwickeln, das leicht verfügbar und einfach zu bedienen ist. Insbesondere wurde ein öffentlich zugänglicher ALDIC-Algorithmus (Augmented-Lagrangeian Digital Image Correlation) für die Messung von 2D-Dehnungen angepasst, indem die Verschiebungen von Zellkernen innerhalb der Achillessehnen der Maus unter einachsiger Spannung verfolgt wurden. Zusätzlich wurde die Genauigkeit der berechneten Dehnungen durch die Analyse digital transformierter Bilder sowie durch den Vergleich der Dehnungen mit Werten validiert, die mit einer unabhängigen Technik (d.h. photogebleichten Linien) bestimmt wurden. Schließlich wurde eine Technik in den Algorithmus integriert, um das Referenzbild unter Verwendung des berechneten Verschiebungsfeldes zu rekonstruieren, mit dem die Genauigkeit des Algorithmus in Abwesenheit bekannter Dehnungswerte oder einer sekundären Messtechnik beurteilt werden kann. Der Algorithmus ist in der Lage, Dehnungen bis zu 0,1 mit einer Genauigkeit von 0,00015 zu messen. Die Technik zum Vergleich eines rekonstruierten Referenzbildes mit dem tatsächlichen Referenzbild identifizierte erfolgreich Proben, die fehlerhafte Daten enthielten, und zeigte an, dass in Proben mit guten Daten etwa 85% des Verschiebungsfeldes genau waren. Schließlich stimmten die in den Achillessehnen der Maus gemessenen Stämme mit der bisherigen Literatur überein. Daher ist dieser Algorithmus ein sehr nützliches und anpassungsfähiges Werkzeug zur genauen Messung lokaler Gewebebelastungen in Sehnen.
Sehnen sind mechanoempfindliche Gewebe, die sich als Reaktion auf mechanische Belastungen anpassen und degenerieren 1,2,3,4. Aufgrund der Rolle, die mechanische Reize in der Sehnenzellbiologie spielen, besteht ein großes Interesse daran, die Belastungen zu verstehen, denen Sehnenzellen in der nativen Gewebeumgebung während der Belastung ausgesetzt sind. Es wurden verschiedene experimentelle und analytische Techniken entwickelt, um lokale Gewebebelastungen in Sehnen zu messen. Dazu gehören 2D/3D-Analysen der digitalen Bildkorrelation (DIC) von Oberflächendehnungen unter Verwendung von Speckle-Mustern oder photogebleichten Linien (PBLs)5,6,7,8, die Messung der Änderungen des Schwerpunkt-zu-Schwerpunkt-Abstands einzelner Kerne innerhalb des Gewebes9,10 und eine neuere Vollfeld-3D-DIC-Methode, die Bewegungen außerhalb der Ebene und 3D-Verformungen berücksichtigt 11 . Die Genauigkeit und Empfindlichkeit dieser Techniken wurde jedoch nur in wenigen Fällen berichtet, und keine dieser Techniken wurde öffentlich zugänglich gemacht, was die weit verbreitete Einführung und Nutzung dieser Techniken erschwert.
Ziel dieser Arbeit war es, ein validiertes Analysewerkzeug zur Messung lokaler Gewebestämme in Sehnenexplantaten zu schaffen, das leicht verfügbar und einfach zu bedienen ist. Die gewählte Methode basiert auf einem öffentlich zugänglichen ALDIC-Algorithmus (Augmented-Lagrangeian Digital Image Correlation), der in MATLAB geschrieben wurde und von Yang und Bhattacharya12 entwickelt wurde. Dieser Algorithmus wurde für die Analyse von Sehnenproben angepasst und validiert, indem er auf digital transformierte Bilder angewendet und die in tatsächlichen Sehnenproben gemessenen Dehnungen mit den Ergebnissen aus photogebleichten Linien verglichen wurde. Darüber hinaus wurde eine zusätzliche Funktionalität in den Algorithmus implementiert, um die Genauigkeit des berechneten Verschiebungsfeldes auch ohne bekannte Dehnungswerte oder eine sekundäre Messtechnik zu bestätigen. Daher ist dieser Algorithmus ein sehr nützliches und anpassungsfähiges Werkzeug zur genauen Messung lokaler 2D-Gewebestämme in Sehnen.
Das Ziel dieser Arbeit war es, eine quelloffene, validierte Methode zur Messung der 2D-Dehnungsfelder in Spanngliedern unter Zugbelastung bereitzustellen. Das Fundament der Software basierte auf einem öffentlich zugänglichen ALDIC-Algorithmus12. Dieser Algorithmus wurde in einen größeren MATLAB-Code eingebettet, der die Funktionalität einer inkrementellen (im Vergleich zur kumulativen) Dehnungsanalyse umfasste. Dieser angepasste Algorithmus wurde dann auf den Zugversuch von Spanngliedern ange…
The authors have nothing to disclose.
Diese Arbeit wurde von den National Institutes of Health (R21 AR079095) und der National Science Foundation (2142627) finanziert.
5-DTAF (5-(4,6-Dichlorotriazinyl) Aminofluorescein), single isomer | ThermoFisher | D16 | |
Calipers | Mitutoyo | 500-196-30 | |
Confocal Microscope | Nikon | A1R HD | |
Corning LSE Vortex Mixer | Coning | 6775 | |
DRAQ5 Fluorescent Probe Solution (5 mM) | ThermoFisher | 62554 | |
MATLAB | MathWorks | R2022b | |
Tensile Loading Device | N/A | N/A | Tensile loading device described in Peterson et al, 2020. (ref 13) |
Tube Revolver Rotator | ThermoFisher | 88881001 |