La fixation percutanée transiliaque-transsacrée assistée par système robotique téléopéré est une technique réalisable. Les canaux à vis peuvent être mis en œuvre avec une grande précision grâce à l’excellente liberté de mouvement et à la stabilité des bras robotiques.
La fixation transiliaque-transsacrée des vis est difficile dans la pratique clinique, car les vis doivent percer six couches d’os cortical. Les vis transiliaques-transsacrées fournissent un bras de levier plus long pour résister aux forces de cisaillement verticales perpendiculaires. Cependant, le canal de vis est si long qu’une divergence mineure peut entraîner des lésions neurovasculaires iatrogène. Le développement de robots médicaux a amélioré la précision de la chirurgie. Le présent protocole décrit comment utiliser un nouveau système robotique téléopéré pour exécuter la fixation à vis transiliaque-transacrale. Le robot a été commandé à distance pour positionner le point d’entrée et ajuster l’orientation du manchon. Les positions des vis ont été évaluées à l’aide de la tomodensitométrie postopératoire (TDM). Toutes les vis ont été implantées en toute sécurité, comme confirmé par fluoroscopie peropératoire. La tomodensitométrie postopératoire a confirmé que toutes les vis étaient dans l’os spongieux. Ce système combine l’initiative du médecin avec la stabilité du robot. Le contrôle à distance de cette procédure est possible. La chirurgie assistée par robot a une capacité de rétention de position plus élevée que les méthodes conventionnelles. Contrairement aux systèmes robotiques actifs, les chirurgiens ont un contrôle total sur l’opération. Le système robotisé est entièrement compatible avec les systèmes de salle d’opération et ne nécessite pas d’équipement supplémentaire.
La première application robotique utilisée en chirurgie orthopédique a été le système ROBODOC utilisé en 19921. Depuis lors, les systèmes chirurgicaux assistés par robot se sont rapidement développés. La chirurgie assistée par robot améliore l’arthroplastie en améliorant la capacité du chirurgien à restaurer l’alignement du membre et la cinématique physiologique de l’articulation2. En chirurgie de la colonne vertébrale, le placement des vis pédiculaires à l’aide d’un robot est sûr et précis; Il réduit également l’exposition du chirurgien aux rayonnements3. Cependant, les études sur la chirurgie assistée par robot ont été limitées en raison de l’hétérogénéité des maladies orthopédiques traumatiques. Les recherches existantes sur la chirurgie robotique pour les traumatismes orthopédiques se concentrent principalement sur les vis articulaires sacro-iliaques assistées par robot et la fixation par vis pubienne des fractures de l’anneau pelvien4, la fixation par vis canulée du col du fémur5, les boulons de verrouillage du point d’entrée et distal dans le clouage intramédullaire 6,7, la réduction des fractures percutanées 8,9 et le traitement des patients grièvement blessés dans le domaine militaire10.
La technique de vis percutanée peut être réalisée à l’aide d’un support de navigation 2D et 3D. Les vis sacro-iliaques, de la colonne antérieure, de la colonne postérieure, supra-acétabulaires et magiques sont les techniques percutanées les plus courantes pour les factures pelviennes et acétabulaires11. La technique de vis transiliaque-transsacrée percutanée reste difficile pour les chirurgiens. Une compréhension de l’anatomie pelvienne et de la fluoroscopie aux rayons X, un positionnement précis et une stabilité à long terme de la main sont nécessaires pour cette procédure. Le système robotique téléopéré peut bien répondre à ces exigences. Cette étude utilise un système robotique téléopéré pour compléter la fixation percutanée transiliaque-transsacrée de vis pour les fractures de l’anneau pelvien. Les détails et le déroulement de ce protocole sont présentés ci-dessous.
Système robotique
Le système de positionnement et de guidage orthopédique maître-esclave (MSOPGS) est principalement composé de trois parties: le robot chirurgical (manipulateur esclave) à sept degrés de liberté (DOF), le manipulateur maître avec retour de force et la console. Le système dispose de quatre modes de fonctionnement : traction manuelle, fonctionnement maître-esclave, centre de mouvement à distance (ROM) et urgence. La figure 1 montre le MSOPPGS; Ses principaux composants sont brièvement décrits ci-dessous.
Le robot chirurgical (voir Tableau des matériaux) est un manipulateur à sept DOF pré-certifié pour l’intégration dans les produits médicaux12. Le robot dispose de capteurs de retour de force qui peuvent détecter les changements de force. Le bras robotique peut être commandé manuellement ou à distance. Un capteur de couple est installé à la pointe et mappé au « maître manipulateur », permettant un retour de force en temps réel. La charge maximale sur le bras robotique est suffisante pour résister aux forces des tissus mous et réduire le flottement des instruments chirurgicaux. Le robot est attaché à une plate-forme mobile pour acquérir un lieu de travail opérationnel et assurer la stabilité. La base est connectée au « Master Manipulator » et au système d’exploitation et peut traiter les instructions du système opérationnel.
Le « Master Manipulator » est conçu pour les industries de la santé afin de contrôler précisément le robot. Cet appareil offre sept DOF actifs, y compris des capacités de préhension de retour de force de haute précision. Son effecteur final couvre l’amplitude naturelle des mouvements de la main humaine. Une stratégie de contrôle incrémentiel est utilisée pour obtenir un contrôle intuitif du bras robotique.
Le système opérationnel fournit quatre méthodes pour contrôler le bras robotique : traction manuelle, mode de fonctionnement maître-esclave, centre de mouvement à distance (RCM) et urgence. Le système opératoire relie le chirurgien et le robot et fournit des alarmes de sécurité. Le mode de traction manuelle permet de faire glisser librement le manipulateur dans une plage de travail spécifique. Le robot est automatiquement verrouillé après avoir été arrêté pendant 5 s. En mode maître-esclave, le chirurgien peut utiliser le « Master Manipulator » pour contrôler le mouvement du bras robotique. Le mode RCM permet à l’instrument chirurgical de pivoter autour de l’extrémité de l’instrument. Le mode RCM est le mieux adapté à la réorientation sur la vue de fluoroscopie axiale du canal, comme le signe de larme radiographique du canal supraacétabulaire et la véritable vue sacrée de la voie osseuse transiliaque-transsacrée. Le manipulateur peut être utilisé pour le freinage d’urgence à n’importe quelle position. La figure 2 montre le flux de travail du système.
Quel que soit le type de robot, l’application de base des robots en orthopédie fournit un outil avancé aux chirurgiens pour améliorer la précision de la chirurgie. Cependant, l’émergence des robots chirurgicaux ne remplace pas les médecins. Les chirurgiens qui pratiquent la chirurgie robotique peuvent ou non être dans la salle d’opération. Les robots chirurgicaux comprennent généralement un système de contrôle informatique, un bras robotique responsable de l’opération et un système de navigation res…
The authors have nothing to disclose.
Aucun.
160-slice CT | United Imaging Healthcare Surgical Technology Co. Ltd | uCT780 | Acquire the prescise image and DICOM data |
Electric bone drill | YUTONG Medical | None | Power system |
Fluoroscopic plate base | None | None | Fix the cadaveric pelves to operating table |
K-wire | None | 2.5mm | Guidewire |
Master-Slave Orthopaedic Positioning and Guidance System | United Imaging Healthcare Surgical Technology Co. Ltd | None | A teleoperated robotic system that positions screws for orthopaedic surgery |
Mimics Innovation Suite | Materialise | Mimics Medical 21 | Preoperative planning software |
Mobile C-arm | United Imaging Healthcare Surgical Technology Co. Ltd | uMC560i | Low Dose CMOS Mobile C-arm |
Operating table | KELING | DL·C-I | Fluoroscopic surgical table |
Schanz pins | Tianjin ZhengTian Medical Instrument Co.,Ltd. | 5.0mm | Fix the cadaveric pelves |
Semi-threaded screw | Tianjin ZhengTian Medical Instrument Co.,Ltd. | 7.3mm | Transiliac-Transsacral Screw |
Seven DOF manipulator | KUKA, Germany | LBR Med 7 R800 | Device for performing surgical operations |