Os osteoclastos são células-chave de reabsorção óssea no corpo. Este protocolo descreve um método confiável para a diferenciação in vitro de osteoclastos de monócitos de sangue periférico humano. Este método pode ser utilizado como uma importante ferramenta para o entendimento da biologia dos osteoclastos na homeostase e nas doenças.
Os osteoclastos (COs) são células reabsorvedoras de osso que desempenham um papel fundamental no desenvolvimento esquelético e na remodelação óssea do adulto. Vários distúrbios ósseos são causados pelo aumento da diferenciação e ativação dos CO, de modo que a inibição dessa patobiologia é um princípio terapêutico fundamental. Dois fatores-chave direcionam a diferenciação de OCs de precursores mieloides: fator estimulador de colônias de macrófagos (M-CSF) e ativador do receptor do ligante do fator nuclear kappa-B (RANKL). Os monócitos CD14+ circulantes humanos são conhecidos por se diferenciarem em CO in vitro. Entretanto, o tempo de exposição e a concentração de RANKL influenciam na eficiência da diferenciação. De fato, protocolos para a geração de CO humanos in vitro têm sido descritos, mas muitas vezes resultam em um processo de diferenciação pobre e demorado. Aqui, um protocolo robusto e padronizado para gerar OCs humanos maduros funcionalmente ativos em tempo hábil é fornecido. Os monócitos CD14+ são enriquecidos a partir de células mononucleares do sangue periférico humano (PBMCs) e preparados com M-CSF para upregulation RANK. A exposição subsequente ao RANKL gera CO de maneira dose-dependente e tempo-dependente. Os CO são identificados e quantificados por coloração com fosfatase resistente ao ácido tartarato (TRAP) e análise por microscopia óptica. A coloração por imunofluorescência de núcleos e F-actina é usada para identificar OCs funcionalmente ativos. Além disso, os OCs maduros OSCAR+CD14− são ainda mais enriquecidos por meio da classificação celular por citometria de fluxo e funcionalidade do OC quantificada por ensaios de reabsorção mineral (ou dentina/osso) e formação de anéis de actina. Finalmente, um conhecido inibidor de CO, a rotenona, é usado em CO maduros, demonstrando que a produção de trifosfato de adenosina (ATP) é essencial para a integridade do anel de actina e função do CO. Em conclusão, um ensaio robusto para diferenciar altos números de CO é estabelecido neste trabalho, que em combinação com a coloração com anel de actina e um ensaio de ATP fornece um modelo in vitro útil para avaliar a função dos CO e selecionar novos compostos terapêuticos que possam modular o processo de diferenciação.
Os osteoclastos (OCs) são células gigantes multinucleadas de linhagem hematopoética com capacidade única de reabsorção óssea. São responsáveis pelo desenvolvimento e remodelação contínua do esqueleto1,2. Nas fases esqueléticas do desenvolvimento, os CO e macrófagos residentes no tecido são derivados de progenitores eritro-mieloides e colonizam o nicho ósseo e os tecidos orgânicos. Em condições fisiológicas, progenitores eritromieloides são necessários para o desenvolvimento ósseo normal e erupção dentária, enquanto o influxo de monócitos sanguíneos circulantes para o nicho ósseo proporciona manutenção pós-natal dos COs, da massa óssea e da cavidade da medula óssea3. Em condições patológicas, monócitos são recrutados para locais de inflamação ativa e podem contribuir para a destruição óssea patológica 4,5.
Pacientes com várias formas de artrite experimentam inflamação articular, levando à destruição articular progressiva causada por CO6. Por exemplo, na artrite reumatoide (AR), as CO superativadas são responsáveis pela erosão óssea patológica e destruiçãoarticular7,8, e os tratamentos atuais muitas vezes não melhoram ou interrompem o dano ósseo9,10,11. Alterações nos monócitos circulantes, tanto em termos de distribuição populacional quanto de assinaturas transcriptômicas e epigenéticas, têm sido relatadas em pacientes com AR12,13,14. Além disso, tem sido relatado que respostas alteradas de monócitos à estimulação inflamatória afetam a osteoclastogênese em pacientes com AR com doença ativa15,16,17.
A diferenciação de COs é um processo complexo de várias etapas que compreende o comprometimento das células precursoras mieloides com a diferenciação em precursores de CO. Durante a osteoclastogênese, os CO tornam-se gigantes e multinucleados através da fusão célula-célula, citocinese incompleta e um processo de reciclagem nuclear descrito como fissão e fusão18,19,20. A capacidade de diferenciar CO in vitro tem permitido avanços significativos no entendimento da biologiaóssea21. Os OCs diferenciam-se dos precursores após exposição ao fator estimulador de colônias de macrófagos (M-CSF) e ao receptor ativador do ligante do fator nuclear kappa-B (RANKL). Esta última é essencial para o desenvolvimento e função normais dos CO in vitro e in vivo, mesmo em condições inflamatórias6,22,23. O RANKL é apresentado por osteoblastos e osteócitos, bem como por células T ativadas e fibroblastos na sinóvia da AR inflamada2,24,25. Durante o processo de diferenciação do CO, monócitos expostos ao receptor M-CSF upregulate ativador da expressão do fator nuclear kappa-B (RANK) em sua membrana celular e, sob estimulação subsequente com RANKL, diferenciam-se em pré-OCs mononucleares positivos para fosfatase ácida resistente ao tartarato (TRAP) e, em seguida, em OCs multinucleados15,26. Os CO produzem várias enzimas, sendo a principal delas a TRAP, que possibilita a degradação de fosfoproteínas no interior do osso27. Um regulador e marcador de diferenciação de OC é o receptor associado ao OC (OSCAR). É upregulated precocemente em células precursoras que se comprometem com a linhagem OC28. OCs gigantes multinucleados maduros podem degradar (reabsorver) a matriz esquelética gerando uma grande zona de vedação, que é feita de um anel de actina ao redor de uma borda babada21,29,30. A capacidade de reabsorção óssea dos CO requer a reorganização do citoesqueleto e a consequente polarização e formação de uma membrana contorcida, que é a chamada borda babada. A borda babada é cercada por uma grande faixa circular de uma estrutura rica em F-actina, que é o anel de actina ou zona de vedação. A integridade do anel de actina é essencial para que os COs reabsorvam osso tanto in vitro quanto in vivo, e a formação defeituosa de bordas babadas está associada à menor expressão vacuolar de adenosina trifosfatase (V-ATPase)31,32,33. Além disso, os CO são células ricas em mitocôndrias, e o trifosfato de adenosina (ATP) associa-se a estruturas mitocondriais semelhantes às CO localizadas na borda babada31,32,33. A rotenona atua como um forte inibidor do complexo mitocondrial I e afeta a produção de ATP. Também foi demonstrado que a rotenona inibe a diferenciação e a função da CO34.
Este protocolo descreve um método eficiente e otimizado de osteoclastogênese in vitro a partir de amostras de sangue periférico humano. No sangue periférico humano, os monócitos CD14+ são a principal fonte de FO15,35,36. Neste protocolo, a cinética de exposição e as concentrações de M-CSF e RANKL foram ajustadas para osteoclastogênese ótima. As células mononucleares são primeiramente separadas dos eritrócitos e granulócitos presentes no sangue total por gradiente de densidade; eles são então enriquecidos para monócitos CD14+ usando seleção positiva por esferas magnéticas. Os monócitos CD14+ isolados são então incubados durante a noite com M-CSF. Isso prepara os monócitos para upregulation da expressão de RANK15,26. A adição subsequente de RANKL induz osteoclastogênese e multinucleação de forma tempo-dependente. Os OCs de reabsorção ativa mostram a distribuição característica dos anéis de actina F na borda da membrana celular30,32 e coloração para TRAP. Os CO maduros são analisados quantificando-se as células multinucleadas (mais de três núcleos) TRAP+. A capacidade funcional de CO maduros pode ser avaliada por sua reabsorção, integridade do anel de actina e produção de ATP. Além disso, OCs CD14− OSCAR+ diferenciados podem ser enriquecidos e usados para avaliar os efeitos de certos compostos na funcionalidade do OC via reabsorção mineral (ou dentina) e organização da F-actina. Além disso, neste trabalho, um conhecido inibidor de CO, a rotenona, é usado como um exemplo de um composto que afeta a funcionalidade de COs. A redução da atividade de reabsorção de CO sob rotenona está associada à redução da produção de ATP e fragmentação do anel de actina. Em conclusão, este protocolo estabelece um ensaio robusto que pode ser usado como um método de referência para estudar vários aspectos biológicos da diferenciação e função dos CO in vitro.
Essa metodologia pode ser usada para avaliar (1) o potencial dos monócitos circulantes para se diferenciarem em CO na saúde e na doença, bem como (2) o impacto de candidatos terapêuticos na diferenciação e função dos CO. Este robusto protocolo de osteoclastogênese permite determinar a eficácia e os mecanismos das terapias-alvo ósseas tanto na diferenciação de CO de células precursoras quanto na função de COs maduros.
A fácil cultura e o isolamento de um grande número de CO funcionais in vitro são importantes para o avanço da compreensão da biologia óssea e das doenças mediadas por CO. Classicamente, as CO eram geradas em coculturas com osteoblastos ou células estromais e células hematopoéticas do baço ou da medula óssea38,39. Um avanço significativo no entendimento da osteoclastogênese foi a identificação do RANKL como o principal regulador da formação, diferenciação e sobrevida do CO40. Os primeiros protocolos de sistemas de cultura dependentes de RANKL utilizavam CMSP para geração de CO21,41,42. No entanto, essas culturas mistas são longas e apresentam muitos fatores de confusão que limitam a capacidade de testar os efeitos diretos sobre a diferenciação e função do CO. Este protocolo descreve um modelo in vitro eficiente e confiável de osteoclastogênese a partir de monócitos CD14+ periféricos humanos, no qual a osteoclastogênese ótima pode ser obtida em até 7 dias (Figura 1 e Figura 2), o que é consideravelmente mais rápido quando comparado a alguns outros protocolos43,44,45,46. As principais características distintivas deste protocolo são (1) o uso de monócitos CD14+ purificados, (2) o priming dos monócitos com M-CSF antes da exposição ao RANKL, (3) o comprimento da cultura (<7 dias) e (4) a detecção confiável da inibição da formação de OC (coloração TRAP) e função (reabsorção, produção de ATP, reorganização do anel de actina) com inibidores.
Durante a otimização da metodologia, vários pontos críticos foram identificados. Tem sido observado que a diferenciação in vitro de CO é amplamente dependente da densidade de semeadura dos monócitos CD14+. Assim, neste protocolo, as células são semeadas em alta densidade (1 x 105 células/poço de uma placa de 96 poços, em 100 μL de meio), pois é essencial que as células possam interagir entre si e estar próximas de se fundir e se tornarem OCs maduras. Da mesma forma, semear células em uma densidade muito alta limita sua diferenciação e crescimento devido a limitações médias e à falta do espaço necessário. Além disso, para obter o máximo sucesso com este protocolo, é importante realizar a separação do gradiente de densidade cuidadosamente e garantir que a população enriquecida de células CD14+ seja a mais pura possível. Por exemplo, etapas inadequadas de lavagem resultam na falta de remoção de plaquetas, o que, consequentemente, inibe a diferenciação das CO47,48. Da mesma forma, a presença de menor contaminação de células T em preparações CD14+ isoladas estimuladas apenas com M-CSF pode resultar em diferenciação de CO, potencialmente via secreção de RANKL por células T49. Portanto, é importante incluir um controle M-CSF para cada experimento. Uma verificação de pureza de rotina, especialmente ao usar um novo kit de isolamento, também é recomendada para garantir a pureza da amostra.
Os números ótimos de OC (intervalo: ~200-1.600 OCs/poço) são obtidos usando meio α-MEM enriquecido com nucleosídeos e L-glutamina. Outros meios de cultura convencionais, incluindo o meio de águia modificado de Dulbecco (DMEM) e o meio Roswell Park Memorial Institute (RPMI) 1640, afetam a produção de CO. A fonte de SFB também pode influenciar a osteoclastogênese. Diferentes lotes de SFB podem levar à redução da osteoclastogênese derivada do RANK-L, bem como ao aparecimento de baixo número de células multinucleadas TRAP+ nos controles M-CSF (Figura 3 Suplementar). Portanto, para obter resultados consistentes, recomenda-se testar novos lotes de FBS antes do uso e continuar com o mesmo lote ao longo dos experimentos para minimizar as variações no processo de diferenciação. Além disso, a variabilidade doador-doador, em termos do número total de CO diferenciados obtidos no ponto de tempo final, constitui uma limitação ao usar esse protocolo para comparar, por exemplo, doadores saudáveis com pacientes. Nesses casos, é imprescindível usar exatamente as mesmas condições e o mesmo lote de meio, FBS e outros reagentes.
Outra etapa necessária para a diferenciação e maturação ótima do CO é o condicionamento dos monócitos com M-CSF antes da adição de RANKL. A exposição das células ao M-CSF 18-24 h antes do RANKL prepara os monócitos para upregulation da expressão de RANK15,26. A adição de RANKL neste momento garante a diferenciação ideal do OC de forma dose-dependente. O grau de diferenciação das CO varia de doador para doador; no entanto, 25 ng/mL de RANKL geralmente é suficiente para diferenciar um alto número de CO na maioria dos doadores. Adicionalmente, 25 ng/mL de RANKL podem ser utilizados em ensaios para a triagem inicial de compostos, pois facilita a avaliação dos efeitos potencializadores e inibitórios dos compostos teste. Outros sistemas de cultura utilizaram tempos mais longos de pré-incubação do M-CSF antes da adição de RANKL, mas isso resulta em um tempo de cultivo mais longo para osteoclastogênese50. Além disso, deixar os monócitos preparados incubarem durante a noite permite que eles se fixem à placa, embora não em um estado totalmente aderente. Portanto, quando o RANKL é introduzido pela primeira vez, o meio deve ser trocado pela metade com muito cuidado, em vez de completamente trocado para evitar o desprendimento e a perda dos monócitos primados. O meio também precisa ser atualizado a cada 3-4 dias para evitar a depleção do meio e evitar a morte celular. Além disso, devido ao baixo volume utilizado neste ensaio (100 μL/poço em uma placa de 96 poços), é de extrema importância ter uma estrutura de poços vazios que sejam preenchidos com uma solução aquosa (isto é, destilado estéril H2O ou PBS) ao redor dos poços de ensaio. Isso evita a evaporação média e os efeitos de borda.
Finalmente, para ensaios metabólicos (por exemplo, ensaios de ATP), é imperativo que as células sejam viáveis para evitar grandes desvios-padrão entre réplicas (Figura 5). A alta viabilidade das células também é importante para a classificação das células e para a posterior cultura dos COs triados (Figura 4). Esse método, no entanto, tem várias limitações. OCs totalmente maduros são muito aderentes e difíceis de se desprender das placas. Os OCs maiores são muitas vezes impossíveis de destacar, o que pode levar a um menor rendimento celular. Portanto, as células precisam ser contadas após a triagem e antes do plaqueamento na concentração necessária. Além disso, no presente protocolo, um método não enzimático (accutase) para desprender os COs é usado para prevenir alterações de membrana na coloração da superfície a jusante para citometria de fluxo. O uso de raspadores celulares (com terminações macias ou duras) também foi testado e levou à alta morte celular. O descolamento enzimático usando soluções de tripsina/EDTA a 0,05% pode ser usado para um maior rendimento de OCs destacados quando a integridade da membrana não é necessária para aplicações a jusante. Além disso, para evitar que os COs se agrupem, o uso de uma alta concentração de EDTA em todos os tampões após o desprendimento celular, bem como a filtragem apropriada antes da aquisição por citometria de fluxo, são altamente recomendados. É importante notar que as culturas de CO são uma população heterogênea de células consistindo de COs maduros, precursores de CO e macrófagos. Macrófagos podem ser facilmente distinguidos de COs, embora tanto pré-OCs mononucleares quanto COs multinucleares expressem OSCAR e não possam ser distinguidos com o presente método (Figura 4). De fato, esta última questão constitui a principal limitação desse método. Além disso, uma baixa expressão de OSCAR também está presente em culturas de M-CSF (Figura 4B) e pode indicar macrófagos preparados para o comprometimento da linhagem OC. É importante definir a porta para as células OSCAR+ com base no sinal de coloração FMO, como mostrado na Figura 4B.
Em resumo, este protocolo descreve um método otimizado e robusto para a produção eficiente de CO ativos e funcionalmente maduros a partir de monócitos humanos primários circulantes. O ponto forte deste protocolo é sua capacidade de gerar OCs em um curto período de tempo e produzir um alto número de OCs diferenciados. Este método abre caminho para a investigação dos mecanismos básicos subjacentes à diferenciação e função dos CO.
The authors have nothing to disclose.
Os autores agradecem ao Flow Core Facility e ao Glasgow Imaging Facility (GIF) dentro da Escola de Infecção e Imunidade por seu apoio e assistência neste trabalho.
µ-Slide 18 well chamber slides | ibidi | 81816 | |
8-well glass chamber slides | Ibidi | 80807 | |
96-well TC plate | Corning | 3596 | |
96-well osteo assay stripwell plate | Corning | 3989 | |
Acetate solution | Sigma Aldrich | 386-3 | from kit Cat No. 387A-1KT |
Acetone | VWR | 20066.330 | |
Acid phosphatase, Leukocyte (TRAP) kit | SIGMA-ALDRICH | 387A-1KT | |
Alexa Fluor 488 Phalloidin | Theremo Fisher – Invitrogen | A12379 | AF488 |
Alexa Fluor 647 Phalloidin | Thermo Fisher – Invitrogen | A22287 | AF647 |
Alfa Aesar 2-Deoxy-D-glucose | Fisher Scientific | 11321867 | 2DG, 98% |
Alpha minimum essential medium | gibco | 22571-020 | |
ATPlite 1step | PerkinElmer | 6016731 | Luminiscence ATP detection assay system |
BD FACSAria III cell sorter | BD Biosciences | ||
Bovine serum albumin (BSA) | Sigma-Aldrich | A9418-100G | |
Cell culture microplate, 96-well, PS, F-bottom | Greiner bio-one | 655083 | White-bottom plates |
Citrate solution | Sigma Aldrich | 91-5 | from kit Cat No. 387A-1KT |
Corning 6ml round-bottom polystyrene test tubes | Fisher Scientific | 352054 | |
Corning osteo assay surface multiple well plate | Sigma-Aldrich | CLS3989 | |
Corning osteo assay Surface multiple well plate 1 x 8 stripwell | Corning | CLS3989-2EA | |
DAPI | Theremo Fisher | D3571 | |
EasySep human CD14 positive selection kit | STEMCELL Technologies | 17858 | |
EasySep red blood cell lysis buffer (10x) | StemCell Technologies | 20110 | |
eBioscience fixable viability dye eFluor 780 | Theremo Fisher – Invitrogen | 65-0865-14 | |
Ethylenediaminetetraacetic acid | Sigma-Aldrich | E7889-100ML | |
EVOS FL auto imaging system | Thermo Fisher | A32678 | |
Falcon round-bottom polypropylene test tubes with cap | Fisher Scientific | 10314791 | |
Falcon tubes 15 mL | Corning | 430790 | |
Falcon tubes 50 mL | Corning | 430828 | |
Fast Garnet GBC base solution | Sigma Aldrich | 387-2 | from kit Cat No. 387A-1KT |
Fetal bovine serum | gibco | 10500-064 | FBS |
Ficoll-Paque Plus | cytiva | 17144003 | |
Formaldehyde | Sigma-Aldrich | F-8775 | |
Human sRANK ligand | PEPROTECH | 310-01-100UG | Receptor activator of nuclear factor kappa-B ligand (RANKL) |
ImageJ Image analysis software | Image J | version 2.9.0 | |
L-glutamine | gibco | 25030-024 | |
Lithium heparin tubes (9 mL) | VACUETTE | 455084 | |
Macrophage colony-stimulating factor | PEPROTECH | 300-25-100UG | M-CSF |
Napthol AS-BI phosphoric acid solution | Sigma Aldrich | 387-1 | from kit Cat No. 387A-1KT |
Neubauer hemacytometer counting chamber | Camlab | SKU 1127885 | |
Oligomycin from Streptomyces Diastatochromogenes | Sigma-Aldrich | Q4876-5MG | |
OSCAR Antibody, anti-human, Vio Bright FITC, REAfinit | Miltenyi Biotec | 130-107-661 and 130-107-617 | Clone REA494 |
PE/Cyanine7 anti-human CD14 antibody | Biolegend | 325618 | Clone HCD14 |
Penicilin/streptomycin | SIGMA | P0781 | |
PHERAstar machine and software | BMG LABTECH | ||
Phosphate-buffered saline (DPBS, 1x) | gibco | 14190-094 | |
REA control antibody (S), human IgG1, Vio Bright FITC, REAfinity | Miltenyi Biotec | 130-113-443 | |
Sodium hypochlorite solution | Sigma-Aldrich | 425044-1L | |
Sodium nitrite solution | Sigma Aldrich | 91-4 | from kit Cat No. 387A-1KT |
Tartrate solution | Sigma Aldrich | 387-3 | from kit Cat No. 387A-1KT |
Triton X-100 | Sigma-Aldrich | 9002-93-1 | |
Trypan blue | Sigma-Aldrich | T8154-100ML |