Summary

一种基于流式细胞术的高通量技术筛选整合素抑制药物

Published: February 02, 2024
doi:

Summary

该协议描述了一种基于流式细胞术的高通量筛选方法,用于鉴定抑制人中性粒细胞上β2整合素活化的小分子药物。

Abstract

该方案旨在建立一种利用构象变化报告抗体和高通量流式细胞术鉴定β2整合素活化的小分子拮抗剂的方法。该方法还可以作为其他基于抗体的高通量筛选方法的指南。β2整合素是白细胞特异性粘附分子,在免疫反应中至关重要。中性粒细胞依靠整合素活化排出血液,不仅可以抵抗感染,还可以参与多种炎症性疾病。控制β2整合素活化是治疗中性粒细胞相关炎症性疾病的可行方法。在该方案中,单克隆抗体 mAb24 与 β2 整合素的高亲和力头片特异性结合,用于定量分离的原代人中性粒细胞上的 β2 整合素活化。N-甲酰甲硫酰-亮氨酰-苯丙氨酸 (fMLP) 用作激活中性粒细胞 β2 整合素的刺激物。本研究使用了能够自动运行 384 孔板样品的高通量流式细胞仪。在3小时内评估320种化学物质对β2整合素抑制的影响。通过这种方法可以识别直接靶向β2整合素的分子或G蛋白偶联受体启动的整合素由内而外的激活信号通路中的靶分子。

Introduction

许多炎症性疾病的特征在于中性粒细胞浸润在肿胀或损伤部位1。为了浸润这些组织,中性粒细胞必须完成中性粒细胞募集级联反应,包括阻滞到内皮细胞,外渗穿过血管壁,然后募集到组织中2。循环中性粒细胞需要β2整合素激活才能完成这一级联反应,特别是在停滞阶段。因此,减少中性粒细胞粘附、外渗和募集的整合素抑制药物可有效治疗炎症性疾病 3,4

β2整合素以前曾被靶向用于炎症性疾病。依法珠单抗是一种直接靶向整合素αLβ2的单克隆抗体,用于治疗银屑病5。然而,依法珠单抗因其致命的副作用而被撤回 – JC病毒再激活导致的进行性多灶性白质脑病6,7。基于整合素的新型抗炎疗法应考虑维持白细胞的抗感染功能,以尽量减少副作用。依法珠单抗的副作用可能是由于单克隆抗体在血液中的循环时间延长,从长远来看可能会抑制免疫功能8.最近的一项研究表明,依法利珠单抗介导 αLβ2 交联和 α4 整合素的不需要的内化,为副作用提供了另一种解释9.因此,短寿命的小分子拮抗剂可能会避免这个问题。

本文介绍了一种使用人中性粒细胞筛选小分子β2整合素拮抗剂的高通量方法。β2 整合素激活需要整合素胞外结构域的构象变化才能进入并增加其与其配体的结合亲和力。在规范的弹簧刀模型中,弯曲闭合的整合素胞外结构域首先延伸到扩展-闭合构象,然后打开其头件以完全激活的扩展-开放构象10,11,12,13。还有另一种途径,从弯曲闭合到弯曲打开和扩展打开,最终是14、15、16、17、1819构象特异性抗体 mAb24 与人 β2-I 样结构域中的表位结合,当胞外结构域的头饰打开时20,21,22,23

在这里,mAb24-APC 用于确定 β2 整合素是否被激活。为了激活中性粒细胞和整合素,N-甲酰甲硫酰-亮氨酰-苯丙氨酸 (fMLP),一种细菌衍生的短趋化肽,可以激活中性粒细胞 β2 整合素24,在该方案中用作刺激物。当 fMLP 与中性粒细胞上的 Fpr1 结合时,涉及 G 蛋白、磷脂酶 Cβ 和磷酸肌醇 3-激酶γ的下游信号级联被激活。这些信号转导事件最终通过由内而外的信号通路18,25 导致整合素激活。除了直接与β2整合素结合并阻止整合素活化构象变化的小分子拮抗剂26外,该方法还可以检测出可以抑制β2整合素由内而外的激活信号通路中成分的化合物。自动流式细胞仪可实现高通量筛选。识别新的拮抗剂不仅可以加深我们对整合素生理学的理解,还可以为基于整合素的抗炎治疗提供转化见解。

Protocol

根据《赫尔辛基宣言》的原则,在获得知情同意后,从去识别化的健康人类供体处获得肝素化全血样本,经康涅狄格大学健康机构审查委员会批准。已获得所有捐赠者的知情同意。本研究的纳入/排除标准经过精心制定,以确保受试者的适用性并将潜在风险降至最低。符合条件的参与者年龄在 18 至 65 岁之间,不分种族,英语流利,能够提供知情同意。被排除在外的受试者包括那些无法为自己提供?…

Representative Results

来自代表性的 384 孔板筛选的数据(图 4)显示,阴性对照的 mAb24-APC MFI 为 3236 ± 110,而阳性对照的 mAb24-APC MFI 为 7588 ± 858。该板的 Z’ 因子约为 0.33,在可接受的范围内31。然而,Z’需要在二次测定中进一步验证。 为了对数据进行归一化,对所有值进行了缩放,以将最大值 1 分配给正均值,将最小值 0 分配给负均值。Z’因子将在二次测定?…

Discussion

中性粒细胞刺激和染色的开始和终止由添加中性粒细胞和固定剂PFA来确定。因此,确保将中性粒细胞或PFA移液到每根色谱柱中的时间间隔相同至关重要。这确保了每个孔中嗜中性粒细胞的刺激和染色时间保持一致。由于中性粒细胞的寿命较短,从从供体采集血液到完成流式细胞术的整个实验必须在同一天进行。中性粒细胞对温度变化高度敏感,当暴露于温度快速升高时,例如从4°C过渡到室温或从…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢康涅狄格大学健康中心流式细胞术核心的 Evan Jellison 博士和 Li Zhu 女士在流式细胞术方面的帮助,感谢康涅狄格大学健康中心免疫学系的 Lynn Puddington 博士对仪器的支持,感谢康涅狄格大学健康中心临床研究核心的 Slawa Gajewska 女士和 Paul Appleton 博士在获取血液样本方面的帮助。我们感谢康涅狄格大学医学院的 Christopher “Kit” Bonin 博士和 Geneva Hargis 博士在科学写作和编辑本手稿方面提供的帮助。这项研究得到了美国国立卫生研究院、美国国家心脏、肺和血液研究所 (R01HL145454)、美国国家普通医学科学研究所 (P20GM121176)、美国心脏协会职业发展奖 (18CDA34110426) 和康涅狄格大学健康中心的启动基金的支持。 图 1 是使用 BioRender.com 创建的。

Materials

16-channel pipettes Thermo 4661090N Instrument
384-well plate Greiner 784201 Materials
APC anti-human CD11a/CD18 (LFA-1) Antibody Clone: m24 BioLegend 363410 Reagents
Bravo Automated Liquid Handling Platform  Agilent 16050-102 384 multi-channel liquid handler
Centrifuge Eppendorf Model 5810R Instrument
FlowJo Becton, Dickinson & Company NA Software
Human Serum Albumin Solution (25%) GeminiBio 800-120 Reagents
Lifitegrast Thermofisher  50-208-2121 Reagents
Nexinhib20 Tocris 6089 Reagents
N-Formyl-Met-Leu-Phe (fMLP) Sigma F3506 Reagents
Paraformaldehyde 16% solution Electron Microscopy Sciences 15710 Reagents
Plate buckets Eppendorf UL155 Accessory
Plate shaker  Fisher 88-861-023 Instrument
PolymorphPrep PROGEN 1895 (previous 1114683) Reagents
Prestwick Chemical Library Compound Plates (10 mM) Prestwick Chemical Libraries Ver19_384 1520 small molecules, 98% marketed approved drugs (FDA, EMA, JAN, and other agencies approved)
RPMI 1640 Medium, no phenol red Gibco 11-835-030 Reagents
Swing-bucket rotor  Eppendorf A-4-62 Rotor
ZE5 Cell Analyzer Bio-Rad Laboratories Model ZE5 Instrument

Referências

  1. Herrero-Cervera, A., Soehnlein, O., Kenne, E. Neutrophils in chronic inflammatory diseases. Cellular & Molecular Immunology. 19 (2), 177-191 (2022).
  2. Sadik, C. D., Kim, N. D., Luster, A. D. Neutrophils cascading their way to inflammation. Trends in immunology. 32 (10), 452-460 (2011).
  3. Mitroulis, I. et al. Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacology & Therapeutics. 147, 123-135 (2015).
  4. Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G., Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nature Reviews Drug Discovery. 21 (1), 60-78 (2022).
  5. Frampton, J. E., Plosker, G. L. Efalizumab. American Journal of Clinical Dermatology. 10 (1), 51-72 (2009).
  6. Talamonti, M. et al. Efalizumab. Expert Opinion on Drug Safety. 10 (2), 239-251 (2011).
  7. Saribaş, A. S., Özdemir, A., Lam, C., Safak, M. JC virus-induced progressive multifocal leukoencephalopathy. Future Virology. 5 (3), 313-323 (2010).
  8. Chames, P., Van Regenmortel, M., Weiss, E., Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology. 157 (2), 220-233 (2009).
  9. Mancuso, R. V., Casper, J., Schmidt, A. G., Krähenbühl, S., Weitz-Schmidt, G. Anti-αLβ2 antibodies reveal novel endocytotic cross-modulatory functionality. British Journal of Pharmacology. 177 (12), 2696-2711 (2020).
  10. Anderson, J. M., Li, J., Springer, T. A. Regulation of integrin α5β1 conformational states and intrinsic affinities by metal ions and the ADMIDAS. Molecular Biology of the Cell. 33 (6), ar56 (2022).
  11. Jensen, R. K. et al. Complement receptor 3 forms a compact high-affinity complex with iC3b. The Journal of Immunology. 206 (12), 3032-3042 (2021).
  12. Li, J., Yan, J., Springer, T. A. Low affinity integrin states have faster ligand binding kinetics than the high affinity state. Elife. 10, e73359 (2021).
  13. Luo, B. H., Carman, C. V., Springer, T. A. Structural basis of integrin regulation and signaling. Annual Review of Immunology. 25, 619-647 (2007).
  14. Fan, Z. et al. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis. Nature communications. 7 (1), 1-14 (2016).
  15. Fan, Z. et al. High-affinity bent β2-integrin molecules in arresting neutrophils face each other through binding to ICAMs in cis. Cell reports. 26 (1), 119-130 (2019).
  16. Gupta, V. et al. The β-tail domain (βTD) regulates physiologic ligand binding to integrin CD11b/CD18. Blood. 109 (8), 3513-3520 (2006).
  17. Sen, M., Yuki, K., Springer, T. A. An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2. Journal of Cell Biology. 203 (4), 629-642 (2013).
  18. Sun, H., Hu, L., Fan, Z. β2 integrin activation and signal transduction in leukocyte recruitment. American Journal of Physiology-Cell Physiology. 321 (2), C308-C316 (2021).
  19. Sun, H., Zhi, K., Hu, L., Fan, Z. The activation and regulation of β2 integrins in phagocytes. Frontiers in Immunology. 12, 978 (2021).
  20. Kamata, T. et al. The role of the CPNKEKEC sequence in the β2 subunit I domain in regulation of integrin αLβ2 (LFA-1). The Journal of Immunology. 168 (5), 2296-2301 (2002).
  21. Lu, C., Shimaoka, M., Zang, Q., Takagi, J., Springer, T. A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proceedings of the National Academy of Sciences. 98 (5), 2393-2398 (2001).
  22. Yang, W., Shimaoka, M., Chen, J., Springer, T. A. Activation of integrin β-subunit I-like domains by one-turn C-terminal α-helix deletions. Proceedings of the National Academy of Sciences. 101 (8), 2333-2338 (2004).
  23. Dransfield, I., Hogg, N. Regulated expression of Mg2+ binding epitope on leukocyte integrin alpha subunits. The EMBO Journal. 8 (12), 3759-3765 (1989).
  24. Torres, M., Hall, F., O'neill, K. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases. The Journal of Immunology. 150 (4), 1563-1577 (1993).
  25. Dorward, D. A. et al. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. The American Journal of Pathology. 185 (5), 1172-1184 (2015).
  26. Lin, F. Y. et al. A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell. 185 (19), 3533-3550 (2022).
  27. Lizcano, A. et al. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood, The Journal of the American Society of Hematology. 129 (23), 3100-3110 (2017).
  28. Tadema, H., Abdulahad, W. H., Stegeman, C. A., Kallenberg, C. G., Heeringa, P. Increased expression of Toll-like receptors by monocytes and natural killer cells in ANCA-associated vasculitis. PloS One. 6 (9), e24315 (2011).
  29. Nagelkerke, S. Q., aan de Kerk, D. J., Jansen, M. H., van den Berg, T. K., Kuijpers, T. W. Failure to detect functional neutrophil B helper cells in the human spleen. PloS one. 9 (2), e88377 (2014).
  30. Blanco-Camarillo, C., Alemán, O. R., Rosales, C. Low-density neutrophils in healthy individuals display a mature primed phenotype. Frontiers in Immunology. 12, 672520 (2021).
  31. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of biomolecular screening. 4 (2), 67-73 (1999).
  32. Shimaoka, M., Salas, A., Yang, W., Weitz-Schmidt, G., Springer, T.A. Small molecule integrin antagonists that bind to the β2 subunit I-like domain and activate signals in one direction and block them in the other. Immunity. 19 (3), 391-402 (2003).
  33. Liu, W. et al. Nexinhib20 Inhibits neutrophil adhesion and β2 integrin activation by antagonizing Rac-1-Guanosine 5′-Triphosphate interaction. The Journal of Immunology. 209 (8), 1574-1585 (2022).
  34. Robinson, M. et al. Antibody against the Leu-CAM beta-chain (CD18) promotes both LFA-1-and CR3-dependent adhesion events. The Journal of Immunology. 148 (4), 1080-1085 (1992).
  35. Lu, C., Ferzly, M., Takagi, J., Springer, T. A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. The Journal of Immunology. 166 (9), 5629-5637 (2001).
  36. Mauler, M. et al. Platelet serotonin aggravates myocardial ischemia/reperfusion injury via neutrophil degranulation. circulation. 139 (7), 918-931 (2019).
  37. Shen, X. F., Cao, K., Jiang, J., Guan, W. X., Du, J. F. Neutrophil dysregulation during sepsis: an overview and update. Journal of Cellular and Molecular Medicine. 21 (9), 1687-1697 (2017).
  38. Chiang, C. C., Cheng, W. J., Korinek, M., Lin, C. Y., Hwang, T. L. Neutrophils in Psoriasis. Frontiers in Immunology. 10, 02376 (2019).
  39. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature medicine. 22 (2), 146-153 (2016).
  40. Bazzoni, G., Shih, D. T., Buck, C. A., Hemler, M. E. Monoclonal antibody 9EG7 defines a novel β1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. Journal of Biological Chemistry. 270 (43), 25570-25577 (1995).
  41. Luque, A. et al. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region(355-425) of the common β1 chain. Journal of Biological Chemistry. 271 (19), 11067-11075 (1996).
  42. Mould, A. P., Akiyama, S. K., Humphries, M. J. The inhibitory Anti-β1 integrin monoclonal antibody 13 recognizes an epitope that is attenuated by ligand occupancy: evidence for allosteric inhibition of integrin function. Journal of Biological Chemistry. 271 (34), 20365-20374 (1996).
  43. Spiess, M. et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. Journal of Cell Biology. 217 (6), 1929-1940 (2018).
  44. Yang, S. et al. Relating conformation to function in integrin α5β1. Proceedings of the National Academy of Sciences. 113 (27), E3872-E3881 (2016).
  45. Shattil, S. J., Hoxie, J. A., Cunningham, M., Brass, L. F. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. Journal of Biological Chemistry. 260 (20), 11107-11114 (1985).
  46. Shattil, S. J., Motulsky, H. J , Insel, P. A., Flaherty, L., Brass, L. F. Expression of fibrinogen receptors during activation and subsequent desensitization of human platelets by epinephrine. Blood. 68 (6), 1224-1231 (1986).
  47. Carreño, R. et al. 2E8 binds to the high affinity i-domain in a metal ion-dependent manner: a second generation monoclonal antibody selectively targeting activated LFA-1. Journal of Biological Chemistry. 285 (43), 32860-32868 (2010).
  48. Keizer, G. D., Visser, W., Vliem, M., Figdor, C. G. A monoclonal antibody (NKI-L16) directed against a unique epitope on the alpha-chain of human leukocyte function-associated antigen 1 induces homotypic cell-cell interactions. The Journal of Immunology. 140 (5), 1393-1400 (1988).
  49. Lefort, C. T. et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood. 119 (18), 4275-4282 (2012).
  50. van Kooyk, Y. et al. Activation of LFA-1 through a Ca2(+)-dependent epitope stimulates lymphocyte adhesion. Journal of Cell Biology. 112 (2), 345-354 (1991).
  51. Mould, A. P. et al. Conformational changes in the integrin a domain provide a mechanism for signal transduction via hybrid domain movement. Journal of Biological Chemistry. 278 (19), 17028-17035 (2003).
  52. Chigaev, A. et al. Real-time analysis of conformation-sensitive antibody binding provides new insights into integrin conformational regulation. Journal of Biological Chemistry. 284 (21), 14337-14346 (2009).
  53. Njus, B. H. et al. Conformational mAb as a tool for integrin ligand discovery. Assay and Drug Development Technologies. 7 (5), 507-515 (2009).
  54. Chigaev, A., Wu, Y., Williams, D. B., Smagley, Y., Sklar, L. A. Discovery of very late antigen-4 (VLA-4, α4β1 integrin) allosteric antagonists. Journal of Biological Chemistry. 286 (7), 5455-5463 (2011).
  55. Ghigo, A., De Santi, C., Hart, M., Mitash, N., Swiatecka-Urban, A. Cell signaling and regulation of CFTR expression in cystic fibrosis cells in the era of high efficiency modulator therapy. Journal of Cystic Fibrosis. 22, S12-S16 (2023).
  56. Van Goor, F., Yu, H., Burton, B., Hoffman, B.J. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. Journal of Cystic Fibrosis. 13 (1), 29-36 (2014).

Play Video

Citar este artigo
Cao, Z., Garcia, M. J., Sklar, L. A., Wandinger-Ness, A., Fan, Z. A Flow Cytometry-Based High-Throughput Technique for Screening Integrin-Inhibitory Drugs. J. Vis. Exp. (204), e64401, doi:10.3791/64401 (2024).

View Video