Celvrije reconstitutie is een belangrijk hulpmiddel geweest om de cytoskeletassemblage te begrijpen, en het werk in het afgelopen decennium heeft benaderingen vastgesteld om septinedynamica in minimale systemen te bestuderen. Hier worden drie complementaire methoden gepresenteerd om septineassemblage in verschillende membraancontexten te observeren: vlakke bilayers, sferische steunen en staafsteunen.
De meeste cellen kunnen hun vorm waarnemen en veranderen om fundamentele celprocessen uit te voeren. In veel eukaryoten is het septinecytoskelet een integraal onderdeel van het coördineren van vormveranderingen zoals cytokinese, gepolariseerde groei en migratie. Septines zijn filamentvormende eiwitten die zich verzamelen om diverse structuren van hogere orde te vormen en in veel gevallen worden aangetroffen in verschillende delen van het plasmamembraan, met name in regio’s met een positieve kromming op micronschaal. Het monitoren van het proces van septineassemblage in vivo wordt belemmerd door de beperkingen van lichtmicroscopie in cellen, evenals de complexiteit van interacties met zowel membranen als cytoskeletale elementen, waardoor het moeilijk is om septinedynamiek in levende systemen te kwantificeren. Gelukkig is er in het afgelopen decennium aanzienlijke vooruitgang geboekt bij het reconstitueren van het septinecytoskelet in een celvrij systeem om de mechanismen te ontleden die de septineassemblage regelen bij hoge ruimtelijke en temporele resoluties. De kernstappen van septineassemblage omvatten septine heterooligomeer associatie en dissociatie met het membraan, polymerisatie in filamenten en de vorming van hogere orde structuren door interacties tussen filamenten. Hier presenteren we drie methoden om septineassemblage in verschillende contexten te observeren: vlakke bilayers, sferische steunen en staafsteunen. Deze methoden kunnen worden gebruikt om de biofysische parameters van septines in verschillende stadia van assemblage te bepalen: als enkele octameren die het membraan binden, als filamenten en als assemblages van filamenten. We gebruiken deze parameters in combinatie met metingen van krommingsbemonstering en preferentiële adsorptie om te begrijpen hoe krommingsdetectie werkt op verschillende lengte- en tijdschalen.
De vormen van cellen en veel van hun interne compartimenten zijn afhankelijk van de lipidemembranen die hen omringen. Membranen zijn visco-elastische structuren die kunnen worden vervormd door interacties met eiwitten, lipidensortering en werkende interne en externe krachten om een verscheidenheid aan vormen te genereren 1,2,3,4. Deze vormen worden vaak beschreven in termen van membraankromming. Cellen gebruiken een gevarieerde reeks eiwitten die bij voorkeur kunnen assembleren op, of “detecteren”, bepaalde membraankrommingen om gedefinieerde spatio-temporele controle over processen zoals celhandel, cytokinese en migratie te garanderen 5,6. De dynamiek van celmachines aan het membraan is met name moeilijk waar te nemen vanwege de moeilijkheid om tijd en ruimtelijke resolutie in evenwicht te brengen met de gezondheid van cellen. Hoewel superresolutietechnieken een gedetailleerd beeld van dergelijke structuren kunnen bieden, vereisen ze langdurige acquisities die niet geschikt zijn voor de tijdschalen van montage / demontage voor de meeste machines. Bovendien maken de moleculaire complexiteit van deze assemblages in hun oorspronkelijke omgeving en de veelheid aan rollen die een enkele component kan spelen, minimale reconstitutiesystemen een waardevol hulpmiddel voor het bestuderen van de functionele capaciteit van moleculen.
Minimale membraan mimetica zijn ontwikkeld om membraaneigenschappen en eiwit-membraan interacties buiten de cel te bestuderen. Membraan mimetica variëren van vrijstaande lipide bilayers, zoals liposomen of gigantische unilamellaire blaasjes, tot ondersteunde lipide bilayers (SLBs)7,8,9,10. SWB’s zijn biomimetische membranen verankerd aan onderliggende ondersteuning, meestal samengesteld uit glas, mica of silica11,12. Een verscheidenheid aan geometrieën kan worden gebruikt, waaronder vlakke oppervlakken, bollen, staven en zelfs golvende of micropatterned substraten om eiwit-membraaninteracties op zowel concave als convexe krommingen tegelijkertijdte onderzoeken 1 3,14,15,16,17,18 . Bilayer-vorming begint met adsorptie van blaasjes op een hydrofiel oppervlak, gevolgd door fusie en breuk om een continue bilayer te vormen (figuur 1)19. Ondersteunde bilayers zijn bijzonder vatbaar voor licht- en elektronenmicroscopie en bieden zowel een betere tijd als ruimtelijke resolutie dan vaak haalbaar is in cellen. Gebogen SWB’s bieden vooral een aantrekkelijk middel om de gevoeligheid van eiwitkromming te onderzoeken bij afwezigheid van significante membraanvervorming, waardoor men onderscheid kan maken tussen krommingsdetectie en krommingsinductie, die vaak onmogelijk te scheiden zijn in vrijstaande systemen.
Septines zijn een klasse van filamentvormende cytoskeletale eiwitten die bekend staan om hun vermogen om te assembleren op positief gebogen membranen 6,18,20. In de loop van de celcyclus in gist verzamelen septines zich tot een ring en moeten ze zich herschikken om de zandloper- en dubbele ringstructuren te vormen die verband houden met knopopkomst en cytokinese, respectievelijk21. Hoewel er prachtig werk is gedaan met behulp van platina replica elektronenmicroscopie om septinearchitectuur te observeren in verschillende celcyclusstadia22, heeft het kijken naar septineassemblage in de loop van de tijd met behulp van lichtmicroscopie in gist een beperkte ruimtelijke resolutie ontmoet. Eerder werk aan septines met behulp van lipide monolagen gevisualiseerd door transmissie-elektronenmicroscopie (TEM) was in staat om verschillende interessante septinestructuren zoals ringen, bundels en gaasjes te reconstitueren23. EM-technieken zijn echter ook beperkt in hun temporele resolutie, in tegenstelling tot fluorescentiemicroscopie. Om de kinetische parameters van het multischaalproces van septineassemblage beter op te lossen, wendden we ons tot ondersteunde membraan mimetica, waar men de membraangeometrie, monsteromstandigheden en beeldvormingsmodaliteit zorgvuldig kan regelen.
De hier beschreven protocollen maken gebruik van planaire of gebogen SLBs, gezuiverd eiwit en een combinatie van microscopietechnieken. Kwantitatieve fluorescentie confocale microscopie en totale interne reflectie fluorescentiemicroscopie (TIRFM) werden gebruikt om zowel bulkeiwitbinding op verschillende membraankrommingen te meten, als om de bindingskinetiek van afzonderlijke moleculen te meten. Bovendien is dit protocol aangepast om te worden gebruikt met scanning elektronenmicroscopie (SEM) om eiwit ultrastructuur op verschillende membraankrommingen te onderzoeken. Hoewel de focus van deze protocollen ligt op het septinecytoskelet, kunnen de protocollen eenvoudig worden aangepast om de krommingsgevoeligheid van elk eiwit te onderzoeken dat de lezer interessant vindt. Bovendien kunnen degenen die werkzaam zijn op gebieden zoals endocytose of vesiculaire handel deze technieken nuttig vinden voor het onderzoeken van de krommingsafhankelijke assemblages van multi-eiwitcomplexen.
Celmembranen nemen veel verschillende vormen, krommingen en fysisch-chemische eigenschappen aan. Om de machinerie op nanometerschaal te bestuderen waarmee cellen assemblages op micrometerschaal bouwen, is het noodzakelijk om minimale reconstitutiesystemen van membraanmi mimetica te ontwerpen. Dit protocol presenteert technieken die zowel de membraankromming als de samenstelling nauwkeurig regelen, terwijl de gebruiker eenvoudig kwantitatieve fluorescentiemetingen kan uitvoeren met behulp van algemeen beschikbare microsco…
The authors have nothing to disclose.
Dit werk werd ondersteund door de National Institutes of Health (NIH) Grant no. R01 GM-130934 en National Science Foundation (NSF) Grant MCB- 2016022. B.N.C, E.J.D.V. en K.S.C. werden gedeeltelijk ondersteund door een subsidie van het National Institute of General Medical Sciences in het kader van de toekenning T32 GM119999.
0.2 mL PCR Tubes with flat cap, Natural | Watson | 137-211C(EX) | |
0.5 mL low adhesion tubes | USA Scientific | 1405-2600 | |
Beta mercaptoethanol (BME) | Sigma-Aldrich | M6250-100ML | |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | A4612-25G | |
Coverglass for making PEGylated coverslips | Thermo Scientific | 152450 | Richard-Allan Scientific SLIP-RITE Cover Glass 24×50 #1.5 |
DOPC | Avanti Polar Lipids | 850375 | |
Egg Liss Rhodamine PE | Avanti Polar Lipids | 810146 | |
EMS Glutaraldehyde Aqueous 25%, EM Grade | VWR | 16220 | |
EMS Sodium Cacodylate Buffer | VWR | 11652 | |
Ethanol, 200 proof | Fisher Scientific | 04-355-223EA | |
HEPES | Sigma Aldrich | H3375-1KG | |
Hexamethyldisilazane | Sigma-Aldrich | 440191 | |
Magnesium chloride | VWR | 7791-18-6 | |
Methyl cellulose 4000cp | Sigma-Aldrich | M052-100G | |
Microglass coverslips for planar bilayers | Matsunami | Discontinued | 22×22 |
Mini centrifuge | |||
Non-Functionalized Silica Microspheres | Bangs Laboratories, Inc. | Depends on size: SS0200*-SS0500* | Silica in aqueous suspension |
Optical Adhesive | Norland Thorlabs | NOA 68 | Flexible adhesive for glass or plastics |
Osmium tetroxide | Millipore Sigma | 20816-12-0 | |
Parafilm | VWR | 52858-000 | |
Plasma Cleaner | Plasma Etch | PE-25 | Voltage: 120V, 60Hz. Current: 15 AMPS |
Potassium chloride | VWR | 0395-1kg | |
Round coverglass, #1.5 12mm | VWR | 64-0712 | |
Sonicator bath | Branson | 1510R-MT | Bransonic Ultrasonic cleaner. 50-60 Hz. Output: 70W |
Soy PI | Avanti Polar Lipids | 840044 | |
Tabletop centrifuge | Eppendorf | 22331 | |
UV Lamp | Spectroline | ENF-260C | 115 Volts, 60 Hz, 0.20 AMPS |
WhatmanGlass Microfiber Filter Paper | VWR | 28455-030 | 42.5 mm diameter, Grade GF/C |