Мы представляем протоколы для простых микрофлюидных анализов актиновой нити в сочетании с флуоресцентной микроскопией, которые позволяют точно контролировать отдельные актиновые нити в режиме реального времени, последовательно подвергая их воздействию различных белковых растворов.
Чтобы расшифровать сложные молекулярные механизмы, которые регулируют сборку и разборку актиновых нитей, является большим преимуществом для мониторинга отдельных реакций, живущих в хорошо контролируемых условиях. Для этого за последние 20 лет появились живые эксперименты с одной нитью, в основном с использованием микроскопии полной флуоресценции внутреннего отражения (TIRF), и дали множество ключевых результатов. В 2011 году, чтобы еще больше расширить возможности этих экспериментов и избежать повторяющихся проблемных артефактов, мы ввели в эти анализы простую микрофлюидику. В этом исследовании подробно описывается наш основной протокол, где отдельные актиновые нити закреплены одним концом на пассивированной поверхности покрова, выравниваются с потоком и могут последовательно подвергаться воздействию различных белковых растворов. Мы также представляем протоколы для конкретных применений и объясняем, как можно применять контролируемые механические силы благодаря вязкому сопротивлению текучего раствора. Мы выделяем технические предостережения этих экспериментов и кратко представляем возможные разработки, основанные на этой технике. Эти протоколы и объяснения, наряду с сегодняшним наличием простого в использовании оборудования для микрофлюидики, должны позволить неспециалистам реализовать этот анализ в своих лабораториях.
Сборка и разборка актиновых нитей и сетей актиновых нитей контролируется несколькими биохимическими реакциями и зависит от механического контекста. Чтобы получить представление об этих сложных механизмах, бесценно иметь возможность наблюдать индивидуальные реакции на отдельных нитях (в достаточно большом количестве). За последние десятилетия наблюдение динамических актиновых нитей в режиме реального времени, главным образом с использованием флуоресцентной микроскопии полного внутреннего отражения (TIRF), стало ключевым методом и обеспечило впечатляющий список результатов, которые не могли быть получены с помощью биохимических анализов объемного раствора1.
Для достижения этого необходимо поддерживать флуоресцентно меченые актиновые нити близко к поверхности крышки микроскопа, подвергая их воздействию растворов актин-связывающих белков (ABP), которые также могут быть флуоресцентно помечены. Это обеспечивает средства для мониторинга событий, происходящих на отдельных нитях в хорошо контролируемых биохимических условиях, и, таким образом, для количественной оценки скорости реакции. Однако следует рассмотреть ряд конкретных ограничений. Искусственное поддержание нитей близко к поверхности, часто благодаря множественным точкам крепления или с помощью скученного агента, такого как метилцеллюлоза, может изменить их поведение (например, вызывая паузы в их полимеризации и деполимеризации2). Отслеживание контура каждой нити накала может быть сложной задачей, особенно если новые нити или фрагменты нити накапливаются в поле зрения с течением времени. Реакции происходят в конечном объеме, где концентрация мономеров актина и ABP может изменяться с течением времени, что потенциально затрудняет получение точных констант скорости. Наконец, возобновление или изменение раствора ABP трудно достичь менее чем за 30 с и часто приводит к неоднородному содержанию белка в образце.
Чуть более 10 лет назад, вдохновленные тем, что уже было сделано для изучения отдельных нитей дезоксирибонуклеиновой кислоты (ДНК)3, мы представили новую технику, основанную на микрофлюидике, для наблюдения и манипулирования отдельными актиновыми нитями4. Это позволяет обойти вышеупомянутые ограничения классических однонитевых техник. В этих анализах микрофлюидики актиновые нити выращиваются из спектрин-актиновых семян, адсорбированных на покровном листе. Таким образом, нити закреплены одним концом только на дне микрофлюидной камеры и колеблются над поверхностью, не прилипая. Нити накаливания выравниваются с потоком поступающих растворов, тем самым облегчая контроль длины их контура и поддерживая их в неглубокой области над крышкой, где можно использовать TIRF. Различные растворы одновременно поступают в камеру без перемешивания, и нити могут подвергаться их последовательному и быстрому воздействию.
Здесь мы предлагаем ряд основных протоколов для создания одноактиновых микрофлюидных анализов в лаборатории. Чехлы и микрофлюидные камеры могут быть подготовлены заранее (за полдня), а сам эксперимент, где можно проверить несколько биохимических состояний, проводится менее чем за сутки.
По сравнению со стандартными методами с одной нитью, где актиновые нити закреплены на поверхности несколькими точками по их длине или поддерживаются близко к ней с помощью агента скученности, такого как метилцеллюлоза, микрофлюидика предлагает ряд преимуществ. Поскольку взаимодейств…
The authors have nothing to disclose.
Мы благодарны Б. Ладу и Р.-М. Лаборатория Mège для использования своего УФ-очистительного оборудования, а также J. Heuvingh и 0. du Roure за первоначальное обучение, которое мы получили по подготовке пресс-форм на кремниевых пластинах и предоставлению советов по микрофлюидике. Мы признаем финансирование из гранта Европейского исследовательского совета StG-679116 (для A.J.) и Agence Nationale de la Recherche Grants Muscactin and Conformin (для G.R.-L.).
β-Casein | Merck | C6905 | Used at 8 mg/mL |
Biopsy punch (with plunger) | Ted Pella | 15115-2 | ID 0.75 mm, OD 1.07 mm |
Biotin-BSA | Merck | A8549 | Used at 1 mg/mL |
BSA | Merck | A8022 | Used at 50 mg/mL |
Coverslip Mini-Rack Teflon holder |
Invitrogen | C14784 | for 8 coverslips |
Coverslips 22x40mm Thickness #1.5 |
Menzel Gläser | 631-1370 | |
DABCO | Merck | D27802 | component in f-buffer |
DTT | Euromedex | EU0006-D | component in f-buffer |
Ester NHS Alexa Fluor 488 | Invitrogen | A20000 | Fluorophore for actin labeling on Lys328. |
EZ-Link Sulfo-NHS-Biotin | Thermo Scientific | 21338 | To biotinylate actin on Lys328 |
Hellmanex III | Hellma | 9-307-011-4-507 | Glass cleaning detergent |
ImageJ | NIH | N/A | open source software |
Laboport | KNF | 811kn.18 | vacuum pump (ultimate vacuum: 240 mbar) |
Magic invisible tape | Scotch | 7100024666 | standard transparent office tape |
Micrewtube | Simport | T341-6T | 2 mL microfluidic reservoir tubes |
Microfluidic device Part 1: Flow Unit S | Fluigent | FLU-S-D-PCKB | Flowmeter |
Microfluidic device Part 2: Fluiwell-4C-2 mL | Fluigent | 14002001PCK | Reservoir holder |
Microfluidic device Part 3: MFCS-EZ | Fluigent | EZ-11000001 EZ-00345001 |
Pressure controller |
Model 42 – UVO-Cleaner | Jelight Inc. | 42-220 | Ultraviolet cleaner |
N6-(6-Aminohexyl)-ATP-ATTO-488 | Jena Bioscience | NU-805-488 | ATP-ATTO used to label actin |
neutravidin | Thermo Scientific | 31000 | |
PLL-PEG | SuSoS | PLL(20)-g[3.5]- PEG(2) | Use at 1 mg/mL in PBS. |
Polydimethylsiloxane (PDMS) Sylgard 184 Silicon Elastomer | Dow Corning | 1673921 | Contains PDMS base and curing agent |
Polyetheretherketone (PEEK) tubing | Merck | Z226661 | “Blue” : I.D. = 0.25 mm |
Safety blow gun | Coilhose Pneumatics | 700-S | filtered air |
Silicon tubing | VWR | 228-0701P | connect PEEK to coupler |
Stainless steel catheter coupler | Prime Bioscience | SC22/15 | Inserted into PDMS inlets and outlet to connect to PEEK tubing |
Thermoplastic film | Sigma Aldrich | PM996 | Standard "parafilm" |
Ultrapure ethanol | VWR | 64-17-5 | |
Ultrasonic cleaning bath | VWR | USC200TH | To accomodate 1 L beakers |
Vacuum dessicator | SP Bel-Art | F42022-0000 | to degas the PDMS or solutions |