Un chip micropatronado recientemente desarrollado con ventanas de óxido de grafeno se fabrica mediante la aplicación de técnicas de sistemas microelectromecánicos, lo que permite obtener imágenes de microscopía electrónica criogénica eficiente y de alto rendimiento de varias biomoléculas y nanomateriales.
Una limitación importante para el análisis eficiente y de alto rendimiento de la estructura de biomoléculas utilizando microscopía electrónica criogénica (crio-EM) es la dificultad de preparar muestras crio-EM con espesor de hielo controlado a nanoescala. El chip basado en silicio (Si), que tiene una matriz regular de microagujos con ventana de óxido de grafeno (GO) modelada en una película de nitruro de silicio controlado por espesor (SixNy), se ha desarrollado mediante la aplicación de técnicas de sistema microelectromecánico (MEMS). La fotolitografía UV, la deposición química de vapor, el grabado húmedo y seco de la película delgada y la fundición en gota de materiales de nanoláminas 2D se utilizaron para la producción en masa de los chips micropatronados con ventanas GO. La profundidad de los micro-agujeros se regula para controlar el espesor del hielo bajo demanda, dependiendo del tamaño de la muestra para el análisis crio-EM. La afinidad favorable de GO hacia las biomoléculas concentra las biomoléculas de interés dentro del microagujeto durante la preparación de la muestra crio-EM. El chip micropatronado con ventanas GO permite imágenes crio-EM de alto rendimiento de varias moléculas biológicas, así como nanomateriales inorgánicos.
La microscopía electrónica criogénica (crio-EM) se ha desarrollado para resolver la estructura tridimensional (3D) de las proteínas en su estado nativo 1,2,3,4. La técnica consiste en fijar proteínas en una capa delgada (10-100 nm) de hielo vítreo y adquirir imágenes de proyección de proteínas orientadas aleatoriamente utilizando un microscopio electrónico de transmisión (TEM), con la muestra mantenida a temperatura de nitrógeno líquido. Miles o millones de imágenes de proyección son adquiridas y utilizadas para reconstruir una estructura 3D de la proteína mediante algoritmos computacionales 5,6. Para un análisis exitoso con crio-EM, la preparación de crio-muestras se ha automatizado mediante la congelación por inmersión del equipo que controla las condiciones de borrado, la humedad y la temperatura. La solución de muestra se carga en una rejilla TEM con una membrana de carbono agujereada, se borra sucesivamente para eliminar el exceso de solución y luego se congela con etano líquido para producir hielo vítreo delgado 1,5,6. Con los avances en crio-EM y la automatización de la preparación demuestras 7, el crio-EM se ha utilizado cada vez más para resolver la estructura de las proteínas, incluidas las proteínas de la envoltura para virus y las proteínas del canal iónico en la membrana celular 8,9,10. La estructura de las proteínas de la envoltura de las partículas virales patógenas es importante para comprender la patología de la infección viral, así como para desarrollar el sistema de diagnóstico y las vacunas, por ejemplo, el SARS-CoV-211, que causó la pandemia de COVID-19. Además, las técnicas de crio-EM se han aplicado recientemente a las ciencias de los materiales, como para materiales sensibles al haz de imágenes utilizados en la batería 12,13,14 y los sistemas catalíticos 14,15 y el análisis de la estructura de materiales inorgánicos en estado de solución16.
A pesar de los notables desarrollos en crio-EM y técnicas relevantes, existen limitaciones en la preparación de criomuestras, lo que dificulta el análisis de estructuras 3D de alto rendimiento. Preparar una película de hielo vítreo con un espesor óptimo es especialmente importante para obtener la estructura 3D de materiales biológicos con resolución atómica. El hielo debe ser lo suficientemente delgado como para minimizar el ruido de fondo de los electrones dispersos por el hielo y para prohibir la superposición de biomoléculas a lo largo de la trayectoria del haz de electrones 1,17. Sin embargo, si el hielo es demasiado delgado, puede hacer que las moléculas de proteínas se alineen en las orientaciones preferidas o desnaturalicen 18,19,20. Por lo tanto, el espesor del hielo vítreo debe optimizarse en función del tamaño del material de interés. Además, generalmente se necesita un esfuerzo extenso para la preparación de la muestra y la detección manual de la integridad del hielo y la proteína en las rejillas TEM preparadas. Este proceso consume mucho tiempo, lo que dificulta su eficiencia para el análisis de estructuras 3D de alto rendimiento. Por lo tanto, las mejoras en la fiabilidad y reproducibilidad de la preparación de muestras de crio-EM mejorarían la utilización de crio-EM en biología estructural y descubrimiento de fármacos comerciales, así como para la ciencia de materiales.
Aquí, presentamos procesos de microfabricación para hacer un chip micro-estampado con ventanas de óxido de grafeno (GO) diseñadas para crio-EM de alto rendimiento con espesor de hielo controlado21. El chip micropatronado se fabricó utilizando técnicas de sistema microelectromecánico (MEMS), que pueden manipular la estructura y las dimensiones del chip según los fines de imagen. El chip micropatronado con ventanas GO tiene una estructura de micropocillo que se puede llenar con la solución de muestra, y la profundidad del micropozo se puede regular para controlar el grosor del hielo vítreo. La fuerte afinidad de GO por las biomoléculas mejora la concentración de biomoléculas para la visualización, mejorando la eficiencia del análisis de la estructura. Además, el chip micropatronado está compuesto por un marco de Si, que proporciona una alta estabilidad mecánica para la rejilla19, lo que lo hace ideal para manipular el chip durante los procedimientos de preparación de muestras y la obtención de imágenes crio-EM. Por lo tanto, un chip micropatrullado con ventanas GO fabricadas por técnicas MEMS proporciona confiabilidad y reproducibilidad de la preparación de muestras crio-EM, lo que puede permitir un análisis de estructura eficiente y de alto rendimiento basado en cryo-EM.
Los procesos de microfabricación para producir chips micro-modelados con ventanas GO se presentan aquí. El chip micropatronado fabricado está diseñado para regular el grosor de la capa de hielo vítreo controlando la profundidad del microagujeto con ventanas GO dependiendo del tamaño del material a analizar. Se fabricó un chip microestampado con ventanas GO utilizando una serie de técnicas MEMS y un método de transferencia de nanoláminas 2D (Figura 1). La principal ventaja de utiliz…
The authors have nothing to disclose.
M.-H.K., S.K., M.L. y J.P. reconocen el apoyo financiero del Instituto de Ciencias Básicas (Grant No. IBS-R006-D1). S.K., M.L. y J.P. reconocen el apoyo financiero del Programa de Investigadores Pioneros Creativos a través de la Universidad Nacional de Seúl (2021) y la subvención NRF financiada por el gobierno coreano (MSIT; Grant Nos. NRF-2020R1A2C2101871 y NRF-2021M3A9I4022936). M.L. y J.P. reconocen el apoyo financiero de la BECA DE Ciencia POSCO de POSCO TJ Park Foundation y la subvención NRF financiada por el gobierno coreano (MSIT; Conceda el Número de subvención. NRF-2017R1A5A1015365). J.P. reconoce el apoyo financiero de la subvención NRF financiada por el gobierno coreano (MSIT; Conceda el Número de subvención. NRF-2020R1A6C101A183), y los Programas de Iniciativas de Investigación Interdisciplinaria de la Facultad de Ingeniería y la Facultad de Medicina de la Universidad Nacional de Seúl (2021). M.-H.K. reconoce el apoyo financiero de la subvención NRF financiada por el gobierno coreano (MSIT; Conceda el Número de subvención. NRF-2020R1I1A1A0107416612). Los autores agradecen al personal y al equipo del Centro de Imágenes Macromoleculares y Celulares de la Universidad Nacional de Seúl (SNU CMCI) por sus incansables esfuerzos y perseverancia con los experimentos crio-EM. Los autores agradecen a S. J. Kim del Centro Nacional de Instalaciones de Investigación Interuniversitaria por su ayuda con los experimentos FIB-SEM.
1-methyl-2-pyrrolidinone (NMP) | Sigma Aldrich, USA | 443778 | |
Acetone | |||
AFM | Park Systems, South Korea | NX-10 | |
Aligner | Midas System, South Korea | MDA-600S | |
AZ 300 MIF developer | AZ Electronic Materials USA Corp., USA | 184411 | |
Cryo-EM holder | Gatan, USA | 626 single tilt cryo-EM holder | |
Cryo-plunging machine | Thermo Fisher SCIENTIFIC, USA | Vitrobot Mark IV | |
Focused ion beam-scanning electron microscopy (FIB-SEM) | FEI Company, USA | Helios NanoLab 650 | |
Glow discharger | Ted Pella Inc., USA | PELCO easiGlow | |
Graphene oxide (GO) solution | Sigma Aldrich, USA | 763705 | |
Hexamethyldisizazne (HMDS), 98+% | Alfa Aesar, USA | 10226590 | |
Low pressure chemical vapor deposition (LPCVD) | Centrotherm, Germany | LPCVD E1200 | |
maP1205 positive PR | Micro resist technology, Germany | A15139 | |
Potassium hydroxide (KOH), flake | DAEJUNG CHEMICALS & METALS Co. LTD., South Korea | 6597-4400 | |
Raman Spectrometer | NOST, South Korea | Confocal Micro Raman System HEDA | |
Reactive ion etcher (RIE) | Scientific Engineering, South Korea | Lab-built | |
SEM | Carl Zeiss, Germany | SUPRA 55VP | |
Si wafer | JP COMMERCE, South Korea | 4" Silicon wafer, P(B)type, (100), 1-30ohm.c m, DSP, T:100um | |
Spin coater | Dong Ah Trade Corp., South Korea | ACE-200 | |
TEM | JEOL, Japan | JEM-2100F |