Die intravitale Fluoreszenzmikroskopie kann verwendet werden, um Leukozyten-Endothel-Interaktionen und Kapillarperfusion in Echtzeit zu untersuchen. Dieses Protokoll beschreibt Methoden zur Abbildung und Quantifizierung dieser Parameter im pulmonalen Mikrokreislauf mit einem vakuumstabilisierten Lungenbildgebungssystem.
Die intravitale Bildgebung von Leukozyten-Endothel-Interaktionen bietet wertvolle Einblicke in immunvermittelte Erkrankungen bei lebenden Tieren. Die Untersuchung von akuten Lungenverletzungen (ALI) / akutem Atemnotsyndrom (ARDS) und anderen Atemwegserkrankungen in vivo ist aufgrund der begrenzten Zugänglichkeit und der inhärenten Bewegungsartefakte der Lunge schwierig. Nichtsdestotrotz wurden verschiedene Ansätze entwickelt, um diese Herausforderungen zu meistern. Dieses Protokoll beschreibt eine Methode zur intravitalen Fluoreszenzmikroskopie zur Untersuchung von Echtzeit-Leukozyten-Endothel-Wechselwirkungen in der pulmonalen Mikrozirkulation in einem experimentellen Modell von ALI. Ein In-vivo-Lungenbildgebungssystem und eine 3D-gedruckte intravitale Mikroskopieplattform werden verwendet, um die betäubte Maus zu sichern und die Lunge zu stabilisieren, während verwirrende Lungenverletzungen minimiert werden. Nach der Vorbereitung wird die Weitfeldfluoreszenzmikroskopie verwendet, um die Leukozytenadhäsion, das Leukozytenrollen und die Kapillarfunktion zu untersuchen. Während sich das hier vorgestellte Protokoll auf die Bildgebung in einem akuten Modell einer entzündlichen Lungenerkrankung konzentriert, kann es auch angepasst werden, um andere pathologische und physiologische Prozesse in der Lunge zu untersuchen.
Die intravitale Mikroskopie (IVM) ist ein nützliches bildgebendes Werkzeug zur Visualisierung und Untersuchung verschiedener biophysikalischer Prozesse in vivo. Die Lunge ist aufgrund ihrer geschlossenen Lage, der zerbrechlichen Natur ihres Gewebes und der durch Atmung und Herzschlag induzierten Bewegungsartefakte sehr schwierig in vivo abzubilden 1,2. Verschiedene intravitale Mikroskopie-Setups (IVM) wurden für die Echtzeit-Bildgebung von Leukozyten-Endothel-Interaktionen in der pulmonalen Mikrozirkulation entwickelt, um diese Herausforderungen zu meistern. Solche Ansätze basieren auf der chirurgischen Freilegung und Stabilisierung der Lunge für die Bildgebung.
Tiere werden typischerweise durch chirurgische Eingriffe auf die Lungen-IVM vorbereitet. Zuerst werden die Tiere intubiert und beatmet, was die chirurgische Exzision eines Thoraxfensters und nachfolgende Eingriffe zur Stabilisierung der Lunge für die Bildgebung ermöglicht. Eine Technik besteht darin, das Parenchym auf ein Glasdeckglas3 zu kleben, ein Verfahren, das ein erhebliches körperliches Trauma für das abgebildete Gewebe riskiert. Fortgeschrittener ist die Verwendung eines Vakuumsystems zur Stabilisierung der Lunge unter einem Glasfenster4. Dieser Aufbau erleichtert die lose Haftung der Lungenoberfläche am Deckglas über ein reversibles Vakuum, das über einen großen lokalen Bereich verteilt ist, und dehnt die Lunge aus, während die Bewegung in den x-, y- und z-Dimensionen4 begrenzt wird. Das Vakuum wird gleichmäßig durch einen Kanal aufgetragen, der den Bildgebungsbereich des Aufbaus umgibt, und zieht das Gewebe in einen flachen konischen Bereich, der dem bildgebenden Deckglas4 zugewandt ist. Durch dieses Sichtfenster kann die Mikrozirkulation der Lunge mit verschiedenen optischen Bildgebungsmodalitäten untersucht werden.
Lung IVM ermöglicht die quantitative Bildgebung einer Vielzahl von mikrozirkulatorischen Parametern. Dazu gehören Messungen wie Leukozytenspurgeschwindigkeit und -länge5, Flussgeschwindigkeit der roten Blutkörperchen6 und Oxygenierung7, Tumormetastasen8, die Unterscheidung von Immunzellsubpopulationen 9,10,11, Visualisierung von Mikropartikeln12, Alveolardynamik 13,14, Gefäßpermeabilität 15 und Kapillarfunktion 16 . Der Fokus liegt dabei auf der Leukozytenrekrutierung und Kapillarfunktion. Die Einleitung der Leukozytenrekrutierung in der pulmonalen Mikrozirkulation beinhaltet transiente Rollwechselwirkungen und fest adhäsive Wechselwirkungen zwischen Leukozyten und Endothelzellen, die beide unter entzündlichen Bedingungen erhöht sind16,17. Typischerweise wird das Rollen durch die Anzahl der Leukozyten quantifiziert, die eine vom Betreiber definierte Referenzlinie passieren, während die Adhäsion durch die Anzahl der Leukozyten quantifiziert wird, die auf dem Endothel16 unbeweglich sind. Die Kapillarfunktion kann auch in entzündlichen Zuständen beeinträchtigt sein, was oft zu einer verminderten Perfusion führt. Dies kann auf mehrere Faktoren zurückgeführt werden, darunter eine Verringerung der Verformbarkeit roter Blutkörperchen18 und eine vielfältige Expression der induzierbaren NO-Synthase durch Endothelzellen, was zu einem pathologischen Rangieren19 führt. Typischerweise wird die Gesamtlänge der perfundierten Kapillaren pro Fläche gemessen und als funktionelle Kapillardichte (FCD) angegeben.
Die Untersuchung der Leukozytenrekrutierung in der Lunge in Echtzeit erfordert die Markierung biologischer Ziele mit Fluoreszenzfarbstoffen oder fluoreszenzmarkierten Antikörpern20. Alternativ können verschiedene transgene Mausstämme wie Lysozym M-grün fluoreszierendes Protein (LysM-GFP) verwendet werden, um spezifische Immunzelluntergruppen wie Neutrophile21,22 abzubilden. Die fluoreszenzmarkierten Leukozyten können dann mittels Weitfeldfluoreszenzmikroskopie, konfokaler Mikroskopie oder Multiphotonenmikroskopie sichtbar gemacht werden. Diese Techniken erreichen Kontrast, indem sie spezifische Anregungswellenlängen verwenden und emittierte Fluoreszenz detektieren, während sie gleichzeitig die Detektion der Anregungswellenlänge blockieren und so das markierte Objekt hervorheben.
Bestehende Forschungen zur Quantifizierung von Leukozytenrollen, Adhäsion und funktioneller Kapillardichte in der murinen Lunge stützten sich hauptsächlich auf die manuelle Videoanalyse. Möglich wird dies durch Open-Source-Software wie Fiji6,23, proprietäre Software wie CapImage12 oder maßgeschneiderte Bildverarbeitungssysteme 24. Umgekehrt ermöglichen verschiedene proprietäre Softwareplattformen (z. B. NIS Element, Imaris, Volocity, MetaMorph) die automatisierte Messung einer Vielzahl anderer physiologischer Parameter, einschließlich vieler der zuvor hier genannten 5,6,7,8,9,10,11,12,13,15.
Wichtige Beobachtungen wurden in Bezug auf die Pathologie der akuten Lungenschädigung (ALI) und des akuten Atemnotsyndroms (ARDS) unter Verwendung von Lungen-IVM gemacht. ARDS ist durch eine Vielzahl von pathophysiologischen Prozessen in der Lunge gekennzeichnet, einschließlich Lungenödem und Alveolarschäden, die durch eine Funktionsstörung des Endothels und der Epithelbarriereverursacht werden 25. Unter Verwendung eines murinen Modells wurde festgestellt, dass Sepsis-induzierte ALI mit signifikanten schädlichen Veränderungen des Immunzelltransports in der Lungenumgebung assoziiert ist26. Es wurde festgestellt, dass Neutrophile, die in den Kapillaren von Mäusen mit Sepsis-induziertem ALI rekrutiert wurden, die Mikrozirkulation behindern und dadurch die Hypoxie bei ALI26 erhöhen. Darüber hinaus wurde IVM verwendet, um Einblicke in den zugrunde liegenden Reparaturmechanismus nach dem Einsetzen von ARDS27 zu gewinnen. Die Lungen-IVM war auch ein wertvolles Werkzeug zum Verständnis pathophysiologischer Veränderungen bei verschiedenen obstruktiven Lungenerkrankungen. Zum Beispiel hat die Visualisierung des Schleimtransports bei Krankheiten wie Mukoviszidose (CF) und chronisch obstruktiver Lungenerkrankung (COPD) die Untersuchung neuartiger und bestehender Behandlungen für die Schleimentfernungerleichtert 28. Der Leukozytenhandel unter diesen Bedingungen wurde ebenfallsanalysiert 17.
Dieses Protokoll erweitert den ursprünglich von Lamm et al.29 beschriebenen Ansatz, Leukozyten-Endothel-Wechselwirkungen unter Verwendung herkömmlicher Fluoreszenzmikroskopie zu untersuchen. Die beschriebenen Verfahren verwenden ein In-vivo-Lungenbildgebungssystem , das eine 16,5 cm x 12,7 cm große Metallbasis, einen Mikromanipulator und ein Vakuumbildgebungsfenster umfasst (Abbildung 1). Das System ist in einer 20 cm x 23,5 cm großen 3D-gedruckten Plattform (Supplemental File 1) montiert, um eine sichere Befestigung für den Ventilatorschlauch und das Heizkissen zu gewährleisten. Diese Methode bietet eine reproduzierbare und quantifizierbare Bildgebung der murinen pulmonalen Mikrozirkulation in vivo. Wichtige Aspekte der chirurgischen Vorbereitung sowie der ordnungsgemäße Einsatz eines vakuumstabilisierten Lungenbildgebungssystems werden ausführlich erläutert. Schließlich wird ein experimentelles Modell von ALI verwendet, um eine repräsentative Bildgebung und Analyse des veränderten Leukozytenrollens, der Leukozytenadhäsion und der Kapillarperfusion im Zusammenhang mit Entzündungen bereitzustellen. Die Verwendung dieses Protokolls soll weitere wichtige Untersuchungen zu pathophysiologischen Veränderungen der pulmonalen Mikrozirkulation während akuter Krankheitszustände erleichtern.
Das hier vorgestellte Protokoll erfordert Übung und Aufmerksamkeit für einige kritische Schritte. Zunächst ist es wichtig, das Bildgebungsfenster vor Beginn der Intubation und Operation vorzubereiten. Verwenden Sie eine minimale Menge an Vakuumfett, um den äußeren Ring des Bildfensters zu beschichten, tragen Sie das Deckglas auf und testen Sie die Absaugung mit einem Tropfen destilliertem Wasser. Wenn Sie dies im Voraus vorbereiten, wird verhindert, dass die exponierte Lunge während des Setups austrocknet. Während…
The authors have nothing to disclose.
Die Autoren danken Dr. Pina Colarusso, die bei der Bearbeitung und Überarbeitung dieses Manuskripts eine bedeutende Expertise zur Verfügung gestellt hat.
1 mL BD Luer Slip Tip Syringe sterile, single use | Becton, Dickinson and Company | 309659 | 1 mL syringe |
ADSON Dressing Forceps, Tip width 0.6 mm, teeth length 11.5 mm, 12 cm | RWD Life Science Co. | F12002-12 | Blunt forceps |
Albumin-Fluorescein Isothiocyanate | Sigma-Aldrich | A9771-1G | FITC-albumin |
Alcohol Swab Isopropyl Alcohol 70% v/v | Canadian Custom Packaging Company | 80002455 | Alcohol wipe |
AVDC110 Advanced Digital Video Converter | Canopus | 00631069602029 | Digital video converter |
B/W – CCD – Camera | Horn Imaging | BC-71 | Camera |
Bovie Deluxe High Temperature Cautery Kit | Fine Science Tools | 18010-00 | Cauterizer |
C57BL/6 Mice | Charles River Laboratories International | C57BL/6NCrl | C57BL/6 Mice |
Cotton Tipped Applicators | Puritan | 806-WC | Cotton applicator |
CS-8R 8mm Round Glass Coverslip | Warner Instruments | 64-0701 | Glass coverslip |
Digital Pressure Gauge | ITM Instruments Inc. | DG2551L0NAM02L0IM&V | Digital Pressure Gauge |
Dr Mom Slimline Stainless LED Otoscope | Dr. Mom Otoscopes | 1001 | Otoscope |
Ethyl Alchohol 95% Vol | Commercial Alcohols | P016EA95 | 95% ethanol |
Fine Scissors – Martensitic Stainless Steel | Fine Science Tools | 14094-11 | Scissors |
Fisherbrand Colored Labeling Tape | Fisher Scientific | 1590110 | Labeling tape |
Gast DOA-P704-AA High-Capacity Vacuum Pump | Cole-Parmer Canada Company | ZA-07061-40 | Vacuum pump |
Hartman Hemostats | Fine Science Tools | 13003-10 | Hemostatic forceps |
High Vacuum Grease | Dow Corning | DC976VF | Vacuum grease |
Isoflurane USP | Fresenius Kabi | CP0406V2 | Isoflurane |
LIDOcaine HCl Injection 1% 50 mg/5 mL | Teligent Canada | 0121AD01 | Lidocaine HCl 1% |
Lung SurgiBoard | Luxidea, Inc. | IMCH-0001 | Designed for intravital microscopy of the lung |
Mineral Oil | Teva Canada | 00485802 | Mineral oil |
Mouse Endotracheal Intubation Kit | Kent Scientific Corporation | ETI-MSE | Intubation stand, anesthesia mask, 20 G endotracheal cannula, fibre optic cable |
MST49 Fluorescence Microscope | Leica Microsystems | 10 450 022 | Fluorescence Microscope |
N Plan L 20x/0.40 Long Working Distance Microscope Objective | Leica Microsystems | 566035 | 20x objective |
Non-Woven Sponges 2" x 2" | AMD-Ritmed | A2101-CH | Gauze |
Optixcare Eye Lube Plus | Aventix | 5914322 | Tear gel |
Original Prusa i3 MK3S+ 3D Printer | Prusa Research | PRI-MK3S-KIT-ORG-PEI | 3D printer |
Oxygen, Compressed | Linde Canada Inc. | Oxygen | |
PrecisionGlide Needle 30 G x 1/2 (0.3 mm x 13 mm) | Becton, Dickinson and Company | 305106 | 30 G needle |
Pyrex 5340-2L 5340 Filtering Flasks, 2000 mL | Cole-Parmer Canada Company | 5340-2L | Vacuum flask |
Rhodamine 6 G | Sigma-Aldrich | 252433 | Rhodamine 6G |
Secure Soft Cloth Medical Tape – 3" | Primed | PM5-630709 | Cloth tape |
Silastic Medical Grade Tubing .040 in. ID x .085 in. OD | Dow Corning | 602-205 | 1.0 mm I.D. polyethylene tubing |
Somnosuite Low-Flow Anesthesia System | Kent Scientific Corporation | SS-01, SS-04-module | Small rodent ventilator, Low-flow anesthesia system, Heating pad, Rectal temperature probe, Pulse oximeter |
Tissue Forceps, 12.5cm long, Curved, 1 x 2 Teeth | World Precision Instruments | 501216 | Toothed forceps |
Transpore Medical Tape, 1527-1, 1 in x 10 yd (2.5 cm x 9.1 m) | 3M | 7000002795 | Medical tape |
Tubing,Clear,3/8 in Inside Dia. | Grainger Canada | USSZUSA-HT3314 | 1.0 cm I.D. polyethylene tubing |
Whatman 6720-5002 50 mm In-Line Filters, PTFE, 0.2 µm | Cole-Parmer Canada Company | 6720-5002 | Inline 0.2µm filter |