Summary

大鼠星形胶质细胞和小胶质细胞的原代培养及其在肌萎缩侧索硬化症研究中的应用

Published: June 23, 2022
doi:

Summary

我们在这里提出了一个关于如何从大鼠皮质制备神经胶质细胞、星形胶质细胞和小胶质细胞的原代培养物的协议,用于细胞内 Ca2+ 的延时视频成像,用于研究 hSOD1G93A 大鼠模型中肌萎缩侧索硬化症的病理生理学。

Abstract

该协议演示了如何从Sprague Dawley大鼠的皮质制备神经胶质细胞,星形胶质细胞和小胶质细胞的原代培养物,以及如何使用这些细胞来研究肌萎缩侧索硬化症(ALS)的病理生理学大鼠hSOD1G93A 模型中。首先,该协议展示了如何从出生后大鼠皮质中分离和培养星形胶质细胞和小胶质细胞,然后如何使用星形胶质细胞的神经胶质原纤维酸性蛋白(GFAP)标记物和离子钙结合衔接分子1(Iba1)小胶质细胞标记物通过免疫细胞化学来表征和测试这些培养物的纯度。在下一阶段,描述了培养细胞的染料负载(钙敏感Fluo 4-AM)的方法,并在活细胞的视频成像实验中记录了Ca2+ 的变化。

视频记录的示例包括:(1)从ALS患者分离的免疫球蛋白G(IgG)急性暴露于免疫球蛋白G(IgG)的培养星形胶质细胞的Ca2+成像病例,与同一实验中证明的ATP反应相比,显示出特征性和特异性反应。示例还显示,与非转基因对照相比,hSOD1G93A 星形胶质细胞中 ALS IgG 诱发的细胞内钙浓度瞬时升高更显着;(2)在内质网Ca 2 + ATP酶的非竞争性抑制剂thapsigargin(Thg)消耗钙储存期间培养的星形胶质细胞的Ca2+成像,然后通过在记录溶液中添加钙引发的储存操作的钙进入,这证明了hSOD1G93A和非转基因星形胶质细胞中Ca2 +储存操作之间的差异;(3)培养的小胶质细胞的Ca 2+成像主要显示对ALS IgG缺乏反应,而ATP应用引起Ca2+变化。本文还强调了关于培养物的关键细胞密度和纯度、选择正确浓度的Ca2+染料和染料加载技术的可能注意事项和注意事项。

Introduction

细胞培养技术在健康和疾病的细胞神经生理学不同领域取得了许多进展。特别是,从实验室动物的神经元组织中新鲜分离的原代细胞培养物使实验者能够仔细研究不同生化介质和生理设置中不同细胞的行为。使用不同的荧光生理指示剂(例如Ca2+敏感染料)与延时视频显微镜相结合,可以实时更好地了解细胞的生物物理和生化过程。

ALS是一种破坏性的神经退行性疾病,影响上运动神经元和下运动神经元1。该病具有家族型的复杂发病机制,但主要是散发形式(90% 的病例)2。众所周知,非细胞自主机制有助于ALS病理生理学,主要是由于神经胶质细胞的重要作用3。ALS也被很好地描述为一种神经炎症性疾病,涉及体液和炎症的细胞因素。

免疫球蛋白G被广泛用作ALS和其他神经退行性疾病的分子标志物。研究该标志物的血清水平可以指示疾病神经炎症的存在和阶段4,5,6其在脑脊液中的存在可以表明血脑屏障的破坏7。IgG也被确定为ALS患者脊髓运动神经元中的沉积物7。然而,这种方法在IgG水平与疾病分期和特征的相关性方面显示出一些不一致之处6。

从ALS患者血清中分离的IgG(ALS IgG)可以在幼稚星形胶质细胞中诱导钙反应8和神经元中的谷氨酸释放,这表明兴奋性毒性作用 – ALS病理学9的标志。然而,对hSOD1G93A ALS大鼠模型(包含人SOD1突变的多个拷贝10)的研究表明,培养的神经胶质细胞11,组织12,1314或活体动物13中有许多氧化应激标志物。值得注意的是,从ALS大鼠模型培养的星形胶质细胞比来自非转基因同窝的星形胶质细胞更容易发生过氧化物诱导的氧化应激11

培养中的小胶质细胞以不太明显的方式受到ALS IgG的影响。也就是说,BV-2小胶质细胞系仅响应于4/11 ALS IgG患者样本的应用,显示出来自氧化应激荧光标记物的信号升高15。众所周知,小胶质细胞参与许多神经炎症病理,增加了ALS1617非细胞自主机制的氧化应激和晚期进展阶段。然而,ALS IgGs的数据表明,这些细胞可能不像星形胶质细胞那样对这些ALS炎症的体液因子有反应。已经对来自ALS小鼠模型的原代星形胶质细胞进行了几项研究,不仅在幼崽中,而且在有症状的动物中,无论是在大脑还是脊髓上18192021小胶质细胞原代培养也是如此,尽管程度低于星形胶质细胞,并且主要来自胚胎阶段的大脑区域222324

我们在培养的细胞上使用Ca2+的延时视频成像,主要作为跟踪该离子的细胞内瞬变作为兴奋性毒性的生理标志物的手段。因此,通过对这些瞬变(振幅、瞬态下面积、上升时间、频率)进行生物物理表征,研究人员可以从不同的神经变性细胞模型中获得实验诊断参数。因此,该技术提供了对IgG作为疾病生物标志物进行定量生理评估的优势。有大量关于IgG和Ca2+在诱导ALS中的作用的文献。这些研究中的大多数是通过将患者IgGs注射到实验动物25,262728,29中诱导ALS进行的然后显示细胞内Ca 2+升高和IgG沉积。一系列研究探讨了ALS IgGs对体外运动突触的影响303132。在上述背景下,这里介绍的技术将重点放在神经胶质细胞作为ALS非细胞自主机制的重要参与者上,并量化了它们对IgG的潜在兴奋毒性反应作为神经炎症的体液因子。这种方法在测试其他体液因子(如全血清、脑脊液或细胞因子)中可能具有更广泛的应用,这些因子在不同的细胞培养系统和一般炎症的细胞模型中。

本文描述了如何从Sprague Dawley大鼠的皮质制备神经胶质细胞,星形胶质细胞和小胶质细胞的原代培养物,以及如何进一步使用这些细胞研究患者血清来源的IgG的ALS病理生理学。详细介绍了培养细胞的染料上样(图1)和延时视频成像实验中Ca2+ 变化的记录方案。视频记录的例子将显示与ATP相比,神经胶质细胞对ALS IgG的反应,后者激活嘌呤能膜受体。首次展示了一个关于从hSOD1G93A ALS大鼠大脑中分离的星形胶质细胞如何与非转基因对照相比对ALS IgG产生更显着的Ca2+ 反应的示例,以及如何将该过程与Ca2 + 商店操作的差异联系起来。还显示了ALS IgG急性攻击的小胶质细胞中的钙成像示例,细胞内钙仅有适度反应。

Protocol

所有实验均按照欧盟关于为科学目的保护动物的指令进行,并得到贝尔格莱德大学生物学院伦理委员会的许可(批准号EK-BF-2016/08)。关于患者材料(IgG血清),根据世界医学协会道德规范(赫尔辛基宣言)收集用于常规临床检查,并征得患者同意,用于涉及人类的实验。该方案已获得塞尔维亚临床中心伦理委员会(第850/6号)的批准。 1. 原代细胞培养准备 <l…

Representative Results

培养中不同神经胶质细胞类型的表征产生用于实验的星形胶质细胞通常需要15-21天,而小胶质细胞需要10-15天才能生长。进行免疫染色以评估培养物的细胞纯度。 图1 显示了星形胶质细胞标志物GFAP和小胶质细胞标志物Iba1在各自培养物中的双重标记表达。 已知钙成像可揭示健康和患病星形胶质细胞的细胞生理学差异。以前在野生型星形胶?…

Discussion

本文介绍了原代细胞培养方法,作为一种快速且“预算内”的工具,用于研究大鼠hSOD1G93A 模型中的细胞(病理)生理学的不同方面,例如ALS。因此,该技术适用于单细胞水平的研究,可以在更高的组织水平(即,在组织切片或活体动物中)进行外推和进一步研究。然而,细胞培养作为一种技术有一些注意事项。最重要的是在冰上进行脑组织分离和细胞解离,并在尽可能短的时间内进行这?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了塞尔维亚共和国教育科技发展部合同编号 451-03-9/2021-14/ 200178、FENS – NENS 教育和培训集群项目“神经炎症中神经胶质细胞三边课程”和 EC H2020 MSCA RISE 赠款 #778405 的支持。我们感谢Marija Adžić和Mina Perić提供免疫组织化学图像,感谢Danijela Bataveljić帮助撰写论文。

Materials

15 mL tube Sarstedt, Germany 62 554 502
2 mL tube Sarstedt, Germany 72.691
21 G needle Nipro, Japan HN-2138-ET
23 G needle Nipro, Japan HN-2338-ET
5 mL syringe Nipro, Japan SY3-5SC-EC
6 mm circular glass coverslip Menzel Glasser, Germany 630-2113
60 mm Petri dish ThermoFisher Sientific, USA 130181
ATP Sigma-Aldrich, Germany A9062
AxioObserver A1 Carl Zeiss, Germany
Bovine serum albumine Sigma-Aldrich, Germany B6917
Calcium chloride Sigma-Aldrich, Germany 2110
Centrifuge Eppendorf, Germany
DAPI Sigma-Aldrich, Germany 10236276001
D-glucose Sigma-Aldrich, Germany 158968
DMEM Sigma-Aldrich, Germany D5648
Donkey-anti goat AlexaFluor 647 IgG antibody Invitrogen, USA A-21447
Donkey-anti mouse AlexaFluor 488 IgG antibody Invitrogen, USA A-21202
EDTA Sigma-Aldrich, Germany EDS-100G
EGTA Sigma-Aldrich, Germany E4378
”evolve”-EM 512 Digital Camera System Photometrics, USA
Fetal bovine serum (FBS) Gibco, ThermoFisher Scientific, USA 10500064
Fiji ImageJ Software Open source under the GNU General Public Licence
FITC filter set Chroma Technology Inc., USA
Fluo-4 AM Molecular Probes, USA F14201
Goat anti-Iba1 Fujifilm Wako Chemicals, USA 011-27991
HEPES Biowest, France P5455
HighSpeed Solution Exchange System ALA Scientific Instruments, USA
Incubator Memmert GmbH + Co. KG, Germany
Magnesium chloride Sigma-Aldrich, Germany M2393
Matlab software Math Works, USA
Mouse anti-GFAP Merck Millipore, USA MAB360
Mowiol 40-88 Sigma-Aldrich, Germany 324590
Normal donkey serum Sigma-Aldrich, Germany D9663
Paraformaldehyde Sigma-Aldrich, Germany 158127
Penicilin and Streptomycin ThermoFisher Sientific, USA 15140122
Poly-L-lysine Sigma-Aldrich, Germany P5899
Potassium chloride Sigma-Aldrich, Germany P5405
Potassium dihydrogen phosphate Carlo Erba Reagents, Spain 471686
Shaker DELFIA PlateShake PerkinElmer Life Sciencies, USA
Sodium bicarbonate Sigma-Aldrich, Germany S3817
Sodium chloride Sigma-Aldrich, Germany S5886
Sodium phosphate dibasic heptahydrate Carl ROTH GmbH X987.2
Sodium pyruvate Sigma-Aldrich, Germany P5280
Thapsigargine Tocris Bioscience, UK 1138
Triton X – 100 Sigma-Aldrich, Germany T8787
Trypsin Sigma-Aldrich, Germany T4799
Vapro Vapor Pressure Osmometer 5520 Wescor, ELITechGroup Inc., USA
ViiFluor Imaging System Visitron System Gmbh, Germany
VisiChrome Polychromator System Visitron System Gmbh, Germany
VisiView high performance setup Visitron System Gmbh, Germany
Xenon Short Arc lamp Ushio, Japan

Referências

  1. Kiernan, M. C., et al. Amyotrophic lateral sclerosis. Lancet. 377 (9769), 942-955 (2011).
  2. Taylor, J. P., Brown, R. H. J., Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature. 539 (7628), 197-206 (2016).
  3. Gleichman, A. J., Carmichael, S. T. Glia in neurodegeneration: Drivers of disease or along for the ride. Neurobiology of Disease. 142, 104957 (2022).
  4. Zhang, R., et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology. 159 (1-2), 215-224 (2005).
  5. Saleh, I. A., et al. Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. Journal of Neuroimmunology. 215 (1-2), 6 (2009).
  6. Wang, M., et al. Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Frontiers in Neurology. 12, 628710 (2021).
  7. Li, J. -. Y., et al. Blood-brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurological Sciences. 43 (5), 3201-3210 (2022).
  8. Milošević, M., et al. Immunoglobulins G from patients with sporadic amyotrophic lateral sclerosis affects cytosolic Ca2+ homeostasis in cultured rat astrocytes. Cell Calcium. 54 (1), 17-25 (2013).
  9. Andjus, P. R., Stevic-Marinkovic, Z., Cherubini, E. Immunoglobulins from motoneurone disease patients enhance glutamate release from rat hippocampal neurones in culture. Journal of Physiology. 504, 103-112 (1997).
  10. Howland, D. S., et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proceedings of the National Academy of Sciences of the United States of America. 99 (3), 1604-1609 (2002).
  11. Dučić, T., Stamenković, S., Lai, B., Andjus, P., Lučić, V. Multimodal synchrotron radiation microscopy of intact astrocytes from the hSOD1 G93A rat model of amyotrophic lateral sclerosis. Analytical Chemistry. 91 (2), 1460-1471 (2019).
  12. Popović-Bijelić, A., et al. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radical Biology & Medicine. 96, 313-322 (2016).
  13. Stamenković, S., et al. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1(G93A) ALS rat model. Free Radical Biology & Medicine. 108, 258-269 (2017).
  14. Stamenković, S., Dučić, T., Stamenković, V., Kranz, A., Andjus, P. R. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1(G93A) rat. Neurociência. 357, 37-55 (2017).
  15. Milošević, M., et al. Immunoglobulins G from sera of amyotrophic lateral sclerosis patients induce oxidative stress and upregulation of antioxidative system in BV-2 microglial cell line. Frontiers in Immunology. 8, 1619 (2017).
  16. Boillée, S., Cleveland, D. W. Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. Journal of Clinical Investigation. 118 (2), 474-478 (2008).
  17. Boillée, S., et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 312 (5778), 1389-1392 (2006).
  18. Martínez-Palma, L., et al. Mitochondrial modulation by dichloroacetate reduces toxicity of aberrant glial cells and gliosis in the SOD1G93A rat model of amyotrophic lateral sclerosis. Journal of American Society for Experimental Neurotherapeutics. 16 (1), 203-215 (2019).
  19. Díaz-Amarilla, P., et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America. 108 (44), 18126-18131 (2011).
  20. Barbosa, M., et al. Recovery of depleted miR-146a in ALS cortical astrocytes reverts cell aberrancies and prevents paracrine pathogenicity on microglia and motor neurons. Frontiers in Cell Developmental Biology. 9, 634355 (2021).
  21. Gomes, C., et al. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Experimental Cell Research. 395 (2), 112209 (2020).
  22. Kovacs, M., et al. CD34 identifies a subset of proliferating microglial cells associated with degenerating motor neurons in ALS. International Journal of Molecular Sciences. 20 (16), 3880 (2019).
  23. Komiya, H., et al. Ablation of interleukin-19 improves motor function in a mouse model of amyotrophic lateral sclerosis. Molecular Brain. 14 (1), 1-13 (2021).
  24. Trias, E., et al. Emergence of microglia bearing senescence markers during paralysis progression in a rat model of inherited ALS. Frontiers in Aging Neuroscience. 10, 1-14 (2019).
  25. Pullen, A. H., Demestre, M., Howard, R. S., Orrell, R. W. Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta Neuropatholgica. 107 (1), 35-46 (2004).
  26. Obál, I., et al. Intraperitoneally administered IgG from patients with amyotrophic lateral sclerosis or from an immune-mediated goat model increase the levels of TNF-α, IL-10 in the spinal cord and serum of mice. Journal of Neuroinflammation. 13 (1), 121 (2016).
  27. Obál, I., et al. Experimental motor neuron disease induced in mice with long-term repeated intraperitoneal injections of serum from ALS patients. International Journal of Molecular Sciences. 20 (10), 2573 (2019).
  28. Mohamed, H. A., et al. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. Journal of Neuroscience Research. 69 (1), 110-116 (2002).
  29. Engelhardt, J. I., Siklos, L., Appel, S. H. Altered calcium homeostasis and ultrastructure in motoneurons of mice caused by passively transferred anti-motoneuronal IgG. Journal of Neuropathology & Experimental Neurology. 56 (1), 21-39 (1997).
  30. Pagani, M. R., Reisin, R. C., Uchitel, O. D. Calcium signaling pathways mediating synaptic potentiation triggered by amyotrophic lateral sclerosis IgG in motor nerve terminals. Journal of Neuroscience. 26 (10), 2661-2672 (2006).
  31. Carter, J. R., Mynlieff, M. Amyotrophic lateral sclerosis patient IgG alters voltage dependence of Ca2+ channels in dissociated rat motoneurons. Neuroscience Letters. 353 (3), 221-225 (2003).
  32. Fratantoni, S. A., Weisz, G., Pardal, A. M., Reisin, R. C., Uchitel, O. D. Amyotrophic lateral sclerosis IgG-treated neuromuscular junctions develop sensitivity to L-type calcium channel blocker. Muscle & Nerve. 23 (4), 543-550 (2000).
  33. McCarthy, K. D., de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. Journal of Cell Biology. 85 (3), 890-902 (1980).
  34. Vay, S. U., et al. The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. Journl of Neuroinflammation. 17 (1), 100 (2020).
  35. Bijelić, D. D., et al. Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. Journal of Neuroscience Research. 98 (11), 2317-2332 (2020).
  36. Kawamata, H., et al. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. Journal of Neuroscience. 34 (6), 2331-2348 (2014).
  37. Nims, R. W., Price, P. J. Best practices for detecting and mitigating the risk of cell culture contaminants. In Vitro Cellular & Developmental Biology. Animal. 53 (10), 872-879 (2017).
  38. Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes. Journal of Visualized Experiments. (71), e50079 (2013).
  39. Adzic, M., et al. Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro. Journal of Neuroscience Research. 95 (4), 1053-1066 (2017).
  40. Jurga, A. M., Paleczna, M., Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Frontiers in Cellular Neuroscience. 14, 198 (2020).
  41. Butovsky, O., et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nature Neuroscince. 17 (1), 131-143 (2014).
  42. Vankriekelsvenne, E., et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia. 70 (6), 1170-1190 (2022).
  43. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W., Lechleiter, J. D. Chemical calcium indicators. Methods. 46 (3), 143-151 (2008).
check_url/pt/63483?article_type=t

Play Video

Citar este artigo
Milićević, K., Korenić, A., Milošević, M., Andjus, P. R. Primary Cultures of Rat Astrocytes and Microglia and Their Use in the Study of Amyotrophic Lateral Sclerosis. J. Vis. Exp. (184), e63483, doi:10.3791/63483 (2022).

View Video