Summary

Стандартизированный конвейер для изучения морфометрии серого вещества мозжечка человека с использованием структурной магнитно-резонансной томографии

Published: February 04, 2022
doi:

Summary

Представлен стандартизированный конвейер для изучения морфометрии серого вещества мозжечка. Трубопровод сочетает в себе современные подходы с высоким разрешением для оптимизированной и автоматизированной парцелляции мозжечка и регистрации мозжечка на основе вокселя для объемной количественной оценки.

Abstract

Многочисленные направления исследований предоставляют убедительные доказательства роли мозжечка в широком спектре когнитивных и аффективных функций, выходя далеко за рамки его исторической ассоциации с двигательным контролем. Структурные и функциональные исследования нейровизуализации позволили дополнительно усовершенствовать понимание функциональной нейроанатомии мозжечка за пределами его анатомических отделов, подчеркнув необходимость обследования отдельных мозжечковых субъединиц при здоровой изменчивости и неврологических заболеваниях. В этой статье представлен стандартизированный конвейер для изучения морфометрии серого вещества мозжечка, который сочетает в себе современные подходы с высоким разрешением для оптимизированной и автоматизированной парцелляции мозжечка (Автоматическая анатомическая парцелляция мозжечка с использованием U-Net Locally Constrained Optimization; ACAPULCO) и регистрацию мозжечка на основе вокселя (пространственно непредвзятый инфратенториальный шаблон; SUIT) для объемной количественной оценки.

Трубопровод имеет широкое применение к целому ряду неврологических заболеваний и полностью автоматизирован, при этом ручное вмешательство требуется только для контроля качества выходов. Конвейер находится в свободном доступе с существенной сопроводительной документацией и может быть запущен на операционных системах Mac, Windows и Linux. Конвейер применяется в когорте лиц с атаксией Фридрейха (FRDA), и представлены репрезентативные результаты, а также рекомендации по групповому выводному статистическому анализу. Этот конвейер может способствовать надежности и воспроизводимости во всем поле, в конечном итоге обеспечивая мощный методологический подход к характеристике и отслеживанию структурных изменений мозжечка при неврологических заболеваниях.

Introduction

Мозжечок является частью мозга, исторически связанной сдвигательным контролем 1,2,3 и, как полагают, интегрально участвует только в небольшом наборе редких заболеваний, таких как наследственные атаксии 4. Тем не менее, сходящиеся линии исследований анатомического отслеживания у нечеловеческих приматов, а также исследования поражений человека и нейровизуализации предоставляют убедительные доказательства роли мозжечка в широком спектре когнитивных 5,6,7, аффективных 8,9,10,11 и других немоторных функций 7,12 (см.6).  для ознакомления). Кроме того, аномалии мозжечка все чаще участвуют в широком спектре неврологических и психических расстройств, включая болезнь Паркинсона13, болезнь Альцгеймера14,15, эпилепсию16,17, шизофрению18 и расстройство аутистического спектра19 . Поэтому стало необходимым включить мозжечок в функциональные и структурные модели заболеваний головного мозга человека и нормативной поведенческой изменчивости.

Анатомически мозжечок может быть разделен вдоль его верхней до нижней оси на три доли: переднюю, заднюю и флоккулородулярную. Доли далее подразделяются на 10 долек, обозначаемых римскими цифрами I-X20,21 (рисунок 1). Мозжечок также может быть сгруппирован в среднюю линию (vermis) и латеральную (полушарие) зоны, которые соответственно получают входные данные от спинного мозга и коры головного мозга. Передняя доля, состоящая из долек I-V, традиционно ассоциируется с двигательными процессами и имеет обратные связи с моторной коройголовного мозга 22. Задняя доля, включающая дольки VI-IX, в первую очередь связана с немоторными процессами11 и имеет реципрокные связи с префронтальной корой, задней теменной и верхней височной корой головного мозга 8,23. Наконец, флоккулонодулярная доля, содержащая дольку X, имеет взаимные связи с вестибулярными ядрами, которые управляют движениями глаз и равновесием тела во время стояния и походки21.

Растущее количество недавних работ с использованием функциональной нейровизуализации еще больше улучшило понимание функциональной нейроанатомии мозжечка за пределами его анатомических отделов. Например, методы функциональной магнитно-резонансной томографии (фМРТ) в состоянии покоя были использованы для картирования структуры функциональных взаимодействий между мозжечком и мозжечком24. Кроме того, используя подход парцелляции на основе задач, Кинг и его коллеги7 продемонстрировали, что мозжечок демонстрирует богатую и сложную структуру функциональной специализации по всей своей широте, о чем свидетельствуют четкие функциональные границы, связанные с различными двигательными, аффективными, социальными и когнитивными задачами. В совокупности эти исследования подчеркивают важность изучения отдельных подъединиц мозжечка для разработки полных биологических характеристик участия мозжечка как в здоровой изменчивости, так и в неврологических заболеваниях, характеризующихся изменениями в структуре и / или функции мозжечка.

Настоящая работа посвящена методам количественной оценки локальных изменений объема мозжечка с использованием структурной МРТ у людей. В целом, существует два фундаментальных подхода к количественной оценке регионального объема мозга с использованием данных МРТ: сегментация на основе признаков и регистрация на основе воксела. В подходах к сегментации на основе признаков используются анатомические ориентиры и стандартизированные атласы для автоматического определения границ между субрегионами. Основные программные пакеты для сегментации включают FreeSurfer25, BrainSuite26 и FSL-FIRST27. Однако эти пакеты обеспечивают только грубую парцелляцию мозжечка (например, маркировку всего серого вещества и всего белого вещества в каждом полушарии), таким образом, упуская из виду отдельные мозжечковые дольки. Эти подходы также склонны к неправильной сегментации, особенно к чрезмерному включению окружающей сосудистой системы.

Были разработаны новые алгоритмы машинного обучения и маркировки нескольких атласов, которые обеспечивают более точную и тонкую парцелляцию мозжечка, включая алгоритм автоматической классификации мозжечковых долек с использованием неявной межграничной эволюции (ACCLAIM 28,29), инструментарий анализа мозжечка (CATK30), несколько автоматически генерируемых шаблонов (MAGeT31), быструю автоматическую сегментацию мозжечка человека и его долек (RASCAL32). ), сегментацияграфов 33 и сегментация мозжечка (CERES34). В недавней статье, сравнивающей современные полностью автоматизированные подходы к парцелляции мозжечка, было обнаружено, что CERES2 превосходит другие подходы по сравнению с ручной сегментацией мозжечковых долек35 по золотому стандарту. Совсем недавно Хан и его коллеги36 разработали алгоритм глубокого обучения под названием ACAPULCO (Automatic Cerebellum Anatomical Parcellation using U-Net с локально ограниченной оптимизацией), который работает наравне с CERES2, имеет широкую применимость как к здоровым, так и к атрофированным мозжечкам, доступен в формате контейнера Docker и Singularity с открытым исходным кодом для реализации «готовой» реализации и более эффективен по времени, чем другие подходы. ACAPULCO автоматически разделяет мозжечок на 28 анатомических областей.

В отличие от сегментации на основе признаков, подходы к регистрации на основе воксела работают путем точного сопоставления МРТ с шаблонным изображением. Чтобы достичь этого отображения, воксели в исходном изображении должны быть искажены по размеру и форме. Величина этого искажения эффективно обеспечивает измерение объема на каждом вокселе относительно шаблона золотого стандарта. Эта форма объемной оценки известна как «морфометрия на основе вокселя»37. Подходы к регистрации на основе воксела всего мозга, такие как FSL-FLIRT38 / FNIRT39, унифицированная сегментацияSPM 40 и CAT1241, обычно используются для морфометрии на основе воксела. Однако эти подходы плохо учитывают мозжечок, что приводит к низкой надежности и валидности в инфратенториальных областях (мозжечок, ствол мозга42). Чтобы учесть эти ограничения, был разработан алгоритм SUIT (Spatially Unbiased Infra-tentorial Template) для оптимизации регистрации мозжечка и повышения точности морфометрии на основе вокселя42,43.

Сегментация на основе признаков и подходы к регистрации на основе воксела для оценки регионального объема мозжечка имеют фундаментальные сильные и слабые стороны. Подходы сегментации существенно более точны для количественной оценки объема анатомически определенных областей (например, дольков35). Однако границы между различными функциональными модулями мозжечка не соотносятся с его анатомическими фолиями и трещинами (эквивалентными извилинам и бороздам головного мозга7). Поскольку подходы, основанные на регистрации, не ограничены анатомическими ориентирами, возможен более мелкозернистый пространственный вывод и высокомерное структурно-функциональное отображение мозжечка44. Взятые вместе, подходы сегментации и регистрации дополняют друг друга и могут использоваться для ответа на различные исследовательские вопросы.

Здесь представлен новый стандартизированный конвейер, который объединяет эти существующие, проверенные подходы для обеспечения оптимизированной и автоматизированной парцелляции (ACAPULCO) и регистрации мозжечка (SUIT) на основе вокселя для объемной количественной оценки (рисунок 2). Конвейер основывается на установленных подходах, включающих протоколы контроля качества, используя качественную визуализацию и количественное обнаружение выбросов, а также быстрый метод получения оценки внутричерепного объема (ICV) с использованием Freesurfer. Конвейер полностью автоматизирован, с ручным вмешательством, необходимым только для проверки выходных данных контроля качества, и может быть запущен на операционных системах Mac, Windows и Linux. Трубопровод находится в свободном доступе без ограничений на его использование в некоммерческих целях и может быть доступен с веб-страницы ENIGMA Consortium Imaging Protocols (в разделе «ENIGMA Cerebellum Volumetrics Pipeline») после заполнения краткой регистрационной формы45.

Все необходимое программное обеспечение перечислено в таблице материалов, а подробные учебные пособия, включая живую демонстрацию, доступны при загрузке конвейера в дополнение к протоколу, описанному ниже. Наконец, представлены репрезентативные результаты, полученные в результате внедрения конвейера в когорте людей с атаксией Фридрейха (FRDA) и соответствующими возрасту и полу здоровыми контрольными группами, наряду с рекомендациями по статистическому выводному анализу на уровне групп.

Protocol

ПРИМЕЧАНИЕ: Данные, использованные в этом исследовании, были частью проекта, одобренного Комитетом по этике исследований человека Университета Монаша (проект 7810). Участники предоставили письменное информированное согласие. Хотя конвейер может быть запущен на операционных системах Mac,…

Representative Results

Парцелляция мозжечка (ACAPULCO) Контроль качества мозжечковых пакетированных масок:Следующие примеры демонстрируют распределенные результаты АКАПУЛЬКО и направляют принятие решений о а) качестве посылочной маски на индивидуальном уровне и б) последую…

Discussion

Мозжечок имеет решающее значение для широкого спектра моторныхфункций человека 3, когнитивных58, аффективных10 и языка 7,59 и участвует во многих неврологических и психиатрических заболеваниях. Наличие стандартизиро?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Работа, представленная в этой рукописи, финансировалась Австралийским национальным советом по здравоохранению и медицинским исследованиям (NHMRC) Ideas Grant: APP1184403.

Materials

ACAPULCO pipeline files  0.2.1 http://enigma.ini.usc.edu/protocols/imaging-protocols/ Please make sure to use acapulco version 0.2.1
Docker for Mac https://docs.docker.com/desktop/mac/install/ macOS must be version 10.14 or newer
Docker requires sudo priviledges
Docker imposes a memory (RAM) constraint on Mac OS. To increase the RAM, open Docker Desktop, go to Preferences and click on resources. Increase the Memory to the maximum
Docker for Windows https://docs.docker.com/docker-for-windows/install/
ENIGMA SUIT scripts http://enigma.ini.usc.edu/protocols/imaging-protocols/
FreeSurfer 7 https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall Following variables need to be set everytime you work with Freesurfer:
export FREESURFER_HOME=equationfreesurfer _installation_directoryequation
source $FREESURFER_HOME/SetUpFreeSurfer.sh
export SUBJECTS_DIR=equationpathequation/enigma/Freesurfer
FSL (for FSLeyes). Optional 6 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation
ICV pipeline files http://enigma.ini.usc.edu/protocols/imaging-protocols/ ICV pipeline can be run in two ways: 1) with docker/singularity. You will not require additionl software; 2) without docker/singularity- this involves running the ICV script (calculate_icv.py) manually. You will require the following additional software:
Python version equation=3.5
Python module pandas
Python module fire
Python module tabulate
Python module Colorama
https://github.com/Characterisation-Virtual-Laboratory/calculate_icv
MATLAB* 2019 or newer https://au.mathworks.com/ An academic license is required
Singularity 3.7 or newer https://www.sylabs.io/docs/ Prefered for high performance computing (HPC) clusters
SPM 12 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ Make sure spm12 and all subfolders are in your MATLAB path
SUIT Toolbox 3.4 http://www.diedrichsenlab.org/imaging/suit_download.htm Make sure you place SUIT toolbox in spm12/toolbox directory
Troubleshooting manual and segmentation output examples http://enigma.ini.usc.edu/protocols/imaging-protocols/
Tutorial manual and video http://enigma.ini.usc.edu/protocols/imaging-protocols/ Manual and accompanying live demonstration provide detailed step-by-step instructions on how to run the pipeline from start to finish.
*Not freely available; an academic license is required

Referências

  1. Holmes, G. The cerebellum of man (Hughlings Jackson memorial lecture). Brain. 62, 1-30 (1939).
  2. Ito, M. The modifiable neuronal network of the cerebellum. The Japanese Journal of Physiology. 34 (5), 781-792 (1984).
  3. Manto, M., Oulad Ben Taib, N. The contributions of the cerebellum in sensorimotor control: what are the prevailing opinions which will guide forthcoming studies. Cerebellum. 12 (3), 313-315 (2013).
  4. Manto, M., Gandini, J., Feil, K., Strupp, M. Cerebellar ataxias: an update. Current Opinion in Neurology. 33 (1), 150-160 (2020).
  5. Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences. 16 (3), 367-378 (2004).
  6. Strick, P. L., Dum, R. P., Fiez, J. A. Cerebellum and nonmotor function. Annual Review of Neuroscience. 32, 413-434 (2009).
  7. King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience. 22 (8), 1371-1378 (2019).
  8. Schmahmann, J. D. An emerging concept. The cerebellar contribution to higher function. Archives of Neurology. 48 (11), 1178-1187 (1991).
  9. Schmahmann, J. D., Sherman, J. C. The cerebellar cognitive affective syndrome. Brain. 121, 561-579 (1998).
  10. Schutter, D. J., van Honk, J. The cerebellum on the rise in human emotion. Cerebellum. 4 (4), 290-294 (2005).
  11. Stoodley, C. J., Schmahmann, J. D. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 44 (2), 489-501 (2009).
  12. Guell, X., Gabrieli, J. D. E., Schmahmann, J. D. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 172, 437-449 (2018).
  13. Lewis, M. M., et al. The role of the cerebellum in the pathophysiology of Parkinson’s disease. The Canadian Journal of Neurological Sciences. 40 (3), 299-306 (2013).
  14. Möller, C., et al. Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. Neurobiology of Aging. 34 (8), 2014-2022 (2013).
  15. Colloby, S. J., O’Brien, J. T., Taylor, J. P. Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer׳s disease: A VBM-DARTEL study. Psychiatry Research. 223 (3), 187-191 (2014).
  16. McDonald, C. R., et al. Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation. Epilepsy Research. 79 (2-3), 130-138 (2008).
  17. Marcián, V., et al. Morphological changes of cerebellar substructures in temporal lobe epilepsy: A complex phenomenon, not mere atrophy. Seizure. 54, 51-57 (2018).
  18. Nopoulos, P. C., Ceilley, J. W., Gailis, E. A., Andreasen, N. C. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biological Psychiatry. 46 (5), 703-711 (1999).
  19. Stoodley, C. J. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience. 8, 92 (2014).
  20. Larsell, O. The development of the cerebellum in man in relation to its comparative anatomy. The Journal of Comparative Neurology. 87 (2), 85-129 (1947).
  21. Haines, D. E., Mihailoff, G. A. The Cerebellum. Fundamental neuroscience for basic and clinical applications. 5th edn. , 394-412 (2018).
  22. Kelly, R. M., Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience. 23 (23), 8432-8444 (2003).
  23. Schmahmann, J. D., Pandya, D. N. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. The Journal of Comparative Neurology. 289 (1), 53-73 (1989).
  24. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology. 106 (5), 2322-2345 (2011).
  25. Fischl, B. FreeSurfer. Neuroimage. 62 (2), 774-781 (2012).
  26. Shattuck, D. W., Leahy, R. M. BrainSuite: an automated cortical surface identification tool. Medical Image Analysis. 6 (2), 129-142 (2002).
  27. Patenaude, B., Smith, S. M., Kennedy, D. N., Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 56 (3), 907-922 (2011).
  28. Bogovic, J. A., Bazin, P. L., Ying, S. H., Prince, J. L. Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. Information Processing in Medical Imaging. 23, 62-73 (2013).
  29. Bogovic, J. A., Prince, J. L., Bazin, P. L. A Multiple object geometric deformable model for image segmentation. Computer Vision and Image Understanding: CVIU. 117 (2), 145-157 (2013).
  30. Price, M., Cardenas, V. A., Fein, G. Automated MRI cerebellar size measurements using active appearance modeling. Neuroimage. 103, 511-521 (2014).
  31. Chakravarty, M. M., et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Humain Brain Mapping. 34 (10), 2635-2654 (2013).
  32. Weier, K., Fonov, V., Lavoie, K., Doyon, J., Collins, D. L. Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)–implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum. Human Brain Mapping. 35 (10), 5026-5039 (2014).
  33. Yang, Z., et al. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. Neuroimage. 127, 435-444 (2016).
  34. Romero, J. E., et al. CERES: A new cerebellum lobule segmentation method. Neuroimage. 147, 916-924 (2017).
  35. Carass, A., et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage. 183, 150-172 (2018).
  36. Han, S., Carass, A., He, Y., Prince, J. L. Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization. Neuroimage. 218, 116819 (2020).
  37. Ashburner, J., Friston, K. J. Voxel-based morphometry–the methods. Neuroimage. 11 (6), 805-821 (2000).
  38. Jenkinson, M., Smith, S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 5 (2), 143-156 (2001).
  39. Andersson, J., Jenkinson, M., Smith, S. . Non-linear registration, aka spatial normalisation. Report No. TR07JA2. , (2010).
  40. Ashburner, J., Friston, K. J. Unified segmentation. Neuroimage. 26 (3), 839-851 (2005).
  41. Dahnke, R., Yotter, R. A., Gaser, C. Cortical thickness and central surface estimation. Neuroimage. 65, 336-348 (2013).
  42. Diedrichsen, J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 33 (1), 127-138 (2006).
  43. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 46, 39-46 (2009).
  44. Harding, I. H., et al. Brain structure and degeneration staging in Friedreich ataxia: Magnetic resonance imaging volumetrics from the ENIGMA-Ataxia Working Group. Annals of Neurology. 90 (4), 570-583 (2021).
  45. MRIQC. Poldrack Lab, Stanford University Available from: https://mriqc.readthedocs.io/en/stable/ (2020)
  46. dcm2niix. Rorden Lab, University of South Carolina Available from: https://github.com/rordenlab/dcm2niix (2021)
  47. . Docker Available from: https://docs.docker.com/ (2021)
  48. Singularity. Sylabs Available from: https://sylabs.io/singularity (2021)
  49. MATLAB. The MathWorks, Inc Available from: https://au.mathworks.com/ (2021)
  50. Statistical parametric mapping SPM12. The Wellcome Centre for Human Neuroimaging Available from: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ (2020)
  51. . FreeSurfer download and install Available from: https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall (2020)
  52. Selvadurai, L. P., et al. Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. Journal of Neurology. 263 (11), 2215-2223 (2016).
  53. Schmahmann, J. D. The cerebellum and cognition. Neuroscience Letters. 688, 62-75 (2019).
  54. Diedrichsen, J., Zotow, E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One. 10 (7), 0133402 (2015).
  55. Gottwald, B., Mihajlovic, Z., Wilde, B., Mehdorn, H. M. Does the cerebellum contribute to specific aspects of attention. Neuropsychologia. 41 (11), 1452-1460 (2003).
  56. Starowicz-Filip, A., et al. The role of the cerebellum in the regulation of language functions. Psychiatria Polska. 51 (4), 661-671 (2017).
  57. Guell, X., Schmahmann, J. D., Gabrieli, J., Ghosh, S. S. Functional gradients of the cerebellum. Elife. 7, 36652 (2018).

Play Video

Citar este artigo
Kerestes, R., Han, S., Balachander, S., Hernandez-Castillo, C., Prince, J. L., Diedrichsen, J., Harding, I. H. A Standardized Pipeline for Examining Human Cerebellar Grey Matter Morphometry using Structural Magnetic Resonance Imaging. J. Vis. Exp. (180), e63340, doi:10.3791/63340 (2022).

View Video