Summary

Robust differentiering af humane iPSC'er i en ren population af adipocytter for at studere adipocytassocierede lidelser

Published: February 09, 2022
doi:

Summary

Protokollen tillader generering af en ren adipocytpopulation fra inducerede pluripotente stamceller (iPSC’er). Retinsyre bruges til at differentiere iPSC’er til mesenkymale stamceller (MSC’er), der anvendes til fremstilling af adipocytter. Derefter anvendes en sorteringsmetode baseret på Nilrød farvning til at opnå rene adipocytter.

Abstract

Nylige fremskridt inden for induceret pluripotent stamcelleteknologi (iPSC) har gjort det muligt at generere forskellige celletyper, herunder adipocytter. De nuværende differentieringsmetoder har imidlertid lav effektivitet og producerer ikke en homogen population af adipocytter. Her omgår vi dette problem ved at bruge en all-trans retinologisk-baseret metode til at producere mesenkymale stamceller (MSC’er) med højt udbytte. Ved at regulere veje, der styrer celleproliferation, overlevelse og vedhæftning, muliggør vores differentieringsstrategi effektiv generering af embryonale kroppe (EB’er), der differentierer sig til en ren population af multipotente MSC’er. Det store antal MSC’er, der genereres ved denne metode, giver en ideel kilde til generering af adipocytter. Imidlertid er prøveheterogenitet som følge af adipocytdifferentiering fortsat en udfordring. Derfor brugte vi en Nile red-baseret metode til rensning af lipidbærende modne adipocytter ved hjælp af FACS. Denne sorteringsstrategi gjorde det muligt for os at etablere en pålidelig måde at modellere adipocytassocierede metaboliske lidelser ved hjælp af en pulje af adipocytter med reduceret prøveheterogenitet og forbedret cellefunktionalitet.

Introduction

Mesenkymale stamceller (MSC’er) fungerer som en effektiv forbigående ressource til fremstilling af celler af mesodermal oprindelse som adipocytter, osteocytter og chondrocytter, som yderligere kan bruges til modellering af deres respektive genetiske lidelser. Tidligere tilgange var imidlertid afhængige af at opnå disse MSC’er fra voksent væv 1, hvilket pålagde udfordringen med at få dem i stort antal fra donorerne og begrænsningen ved at holde dem funktionelt levedygtige under suboptimale in vitro-dyrkningsbetingelser 1,2. Disse hindringer har skabt et stort behov for at have en protokol til generering af MSC’er in vitro. Human inducerede pluripotente stamceller (iPSC’er) kan anvendes som en værdifuld kilde til MSC’er og udviser MSC-karakteristika 3,4,5. iPSC’er-afledte MSC’er kan bruges som en terapeutisk mulighed i flere sygdomme. Også iPSC’er-afledte MSC’ers evne til at generere adipocytter gør dem til en værdifuld in vitro human model til at studere human adipogenese, fedme og adipocytassocierede lidelser.

Nuværende differentieringsprotokoller for adipocytter kan klassificeres i to grupper, hvor den ene involverer differentiering af adipocytter ved hjælp af kemiske eller proteinbaserede cocktails, hvilket giver et resulterende udbytte på 30%-60%6,7,8,9, mens den anden involverer genetisk manipulation til robust induktion af nøgletranskriptionsfaktorer, der styrer adipocytudviklingen, for at give et udbytte på 80%-90%10, 11. Imidlertid rekapitulerer genetisk manipulation ikke den naturlige proces med adipocytdifferentiering og maskerer ofte de subtile paradigmer, der ankommer under adipogenese, hvilket gør det ineffektivt til sygdomsmodelleringsformål12,13. Derfor præsenterer vi en måde at sortere kemisk afledte modne adipocytter fra umodne ved fluorescerende mærkning af lipidbærende adipocytter ved hjælp af Nilrød.

Her præsenterer vi en protokol, der involverer forbigående inkubation af iPSC’er afledte embryoidlegemer (EB’er) med all-trans retinsyre for at producere et stort antal hurtigt prolifererende MSC’er, som yderligere kan bruges til at generere adipocytter14. Vi præsenterer også en måde at sortere kemisk afledte modne adipocytter fra den heterogene differentieringspulje ved fluorescerende mærkning af deres lipiddråber ved hjælp af et lipofilt farvestof; Nilen rød. Dette ville muliggøre generering af en ren population af modne adipocytter med forbedret funktionalitet til nøjagtigt at modellere adipocytassocierede metaboliske lidelser.

Protocol

Undersøgelsen er godkendt af den relevante institutionelle forskningsetiske komité og udført i overensstemmelse med de etiske standarder, der er fastlagt i Helsingfors-erklæringen fra 1964 og dens senere ændringer eller sammenlignelige etiske standarder. Protokollen blev godkendt af Institutional Review Board (IRB) i HMC (nr. 16260/16) og QBRI (nr. 2016-003). Dette arbejde er også optimeret til hESC’er som H1 og H9. Blodprøver blev taget fra raske personer med fuldt informeret samtykke. IPSC’erne genereres fra mon…

Representative Results

Skematisk og morfologi af celler under mesenkymal differentiering: Differentiering af iPSC’er i MSC’er involverer forskellige udviklingsstadier, der spænder over EB-dannelse, MSC-differentiering og MSC-ekspansion (figur 1). I løbet af disse udviklingsstadier erhverver celler forskellige morfologier på grund af de forskellige stimulerende kemikalier, de udsættes for. Ved initiering af differentiering belægges celler i suspension og forventes at være runde med definerede cellekanter, men…

Discussion

Denne protokol har afgørende betydning på grund af dens evne til at levere MSC’er med højt udbytte og effektivitet. Denne masseproduktion af MSC’er blev muliggjort ved forbigående inkubation af iPSC’er-afledte EB’er med 10 μM RA14,15. Transient behandling med 10 μM RA forbedrede MSC-udbyttet med 11,2 til 1542 gange14,15, idet denne protokol kan anvendes på både iPSC’er og hPSC’er. Ved denne dosis …

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret af et tilskud fra Qatar National Research Fund (QNRF) (bevilling nr. NPRP10-1221-160041). Maryam Aghadi blev støttet af GSRA-stipendium fra Qatar National Research Fund (QNRF).

Materials

Adiponectin Abcam ab22554 Adipocyte maturation marker
anti-CD105 BD Pharmingen 560839 MSC differentiation marker
anti-CD14 BD Pharmingen 561712 MSC differentiation marker
anti-CD19 BD Pharmingen 555415 MSC differentiation marker
anti-CD34 BD Pharmingen 555824 MSC differentiation marker
anti-CD44 abcam ab93758 MSC differentiation marker
anti-CD45 BD Pharmingen
560975
MSC differentiation marker
anti-CD73 BD Pharmingen 550256 MSC differentiation marker
anti-CD90 BD Pharmingen 555596 MSC differentiation marker
bFGF R&D 233-FP MSC culture media supplement
C/EBPA Abcam ab40761 Adipocyte maturation marker
Dexamethasone Torics 1126 Adipocyte differentiation media supplement
FABP4 Abcam ab93945 Adipocyte maturation marker
Fetal bovine serum ThermoFisher 10082147 MSC culture media supplement
Glutamax ThermoFisher 35050-061 MSC culture media supplement
IBMX Sigma Aldrich I5879 Adipocyte differentiation media supplement
Indomethacin Sigma Aldrich I7378 Adipocyte differentiation media supplement
Insulin Sigma Aldrich 91077C Adipocyte differentiation media supplement
Knockout DMEM ThermoFisher 12660012 Basal media for preparing matrigel
Low glucose DMEM ThermoFisher 11885084 MSC culturing media
Matrigel Corning 354230 Coating matrix
MEM-alpha ThermoFisher 12561056 Adipocyte differentiation media
Nilered Sigma Aldrich 19123 Sorting marker for adipocyte
Penicillin ThermoFisher 15140122 MSC/Adipocyte media supplement
Phosphate-buffered saline ThermoFisher 14190144 wash buffer
Pierce™ 20X TBS Buffer Thermo Fisher 28358 wash buffer
PPARG Cell Signaling Technology 2443 Adipocyte maturation marker
ReLeSR Stem Cell Technologies 5872 Dissociation reagent
Retinoic acid Sigma Aldrich R2625 MSC differentiation media supplement
Rock inhibitor Tocris 1254/10 hPSC culture media supplement
Roziglitazone Sigma Aldrich R2408 Adipocyte differentiation media supplement
StemFlex ThermoFisher A334901 hPSC culture media
Triton Thermo Fisher 28314 Permebealization reagent
Trypsin ThermoFisher 25200072 Dissociation reagent
Tween 20 Sigma Aldrich P7942 Wash buffer

Referências

  1. Hass, R., Kasper, C., Bohm, S., Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS. 9, 12 (2011).
  2. Wagner, W., et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One. 4 (6), 5846 (2009).
  3. Brown, P. T., Squire, M. W., Li, W. J. Characterization and evaluation of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Cell and Tissue Research. 358 (1), 149-164 (2014).
  4. Trivedi, P., Hematti, P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Experimental Hematology. 36 (3), 350-359 (2008).
  5. Barberi, T., Willis, L. M., Socci, N. D., Studer, L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine. 2 (6), 161 (2005).
  6. Xiong, C., et al. Derivation of adipocytes from human embryonic stem cells. Stem Cells and Development. 14 (6), 671-675 (2005).
  7. Cuaranta-Monroy, I., et al. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Research. 13 (1), 88-97 (2014).
  8. van Harmelen, V., et al. Differential lipolytic regulation in human embryonic stem cell-derived adipocytes. Obesity (Silver Spring). 15 (4), 846-852 (2007).
  9. Noguchi, M., et al. In vitro characterization and engraftment of adipocytes derived from human induced pluripotent stem cells and embryonic stem cells. Stem Cells and Development. 22 (21), 2895-2905 (2013).
  10. Ahfeldt, T., et al. Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biology. 14 (2), 209-219 (2012).
  11. Lee, Y. K., Cowan, C. A. Differentiation of white and brown adipocytes from human pluripotent stem cells. Methods in Enzymology. 538, 35-47 (2014).
  12. Abdelalim, E. M. Modeling different types of diabetes using human pluripotent stem cells. Cellular and Molecular Life Sciences: CMLS. 78 (6), 2459-2483 (2021).
  13. Abdelalim, E. M., Bonnefond, A., Bennaceur-Griscelli, A., Froguel, P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Reviews and Reports. 10 (3), 327-337 (2014).
  14. Karam, M., Younis, I., Elareer, N. R., Nasser, S., Abdelalim, E. M. Scalable Generation of mesenchymal stem cells and adipocytes from human pluripotent stem cells. Cells. 9 (3), (2020).
  15. Karam, M., Abdelalim, E. M. Robust and highly efficient protocol for differentiation of human pluripotent stem cells into mesenchymal stem cells. Methods in Molecular Biology. , (2020).
  16. Li, L., Bennett, S. A., Wang, L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhesion & Migration. 6 (1), 59-70 (2012).
  17. Lai, L., Bohnsack, B. L., Niederreither, K., Hirschi, K. K. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development. 130 (26), 6465-6474 (2003).
  18. Chanchevalap, S., Nandan, M. O., Merlin, D., Yang, V. W. All-trans retinoic acid inhibits proliferation of intestinal epithelial cells by inhibiting expression of the gene encoding Kruppel-like factor 5. FEBS Letters. 578 (1-2), 99-105 (2004).
  19. di Masi, A., et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Molecular Aspects of Medicine. 41, 1 (2015).
  20. Simandi, Z., Balint, B. L., Poliska, S., Ruhl, R., Nagy, L. Activation of retinoic acid receptor signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem cells in embryoid bodies. FEBS Letters. 584 (14), 3123-3130 (2010).
  21. De Angelis, M. T., Parrotta, E. I., Santamaria, G., Cuda, G. Short-term retinoic acid treatment sustains pluripotency and suppresses differentiation of human induced pluripotent stem cells. Cell Death & Disease. 9 (1), 6 (2018).
  22. Li, L., Dong, L., Wang, Y., Zhang, X., Yan, J. Lats1/2-mediated alteration of hippo signaling pathway regulates the fate of bone marrow-derived mesenchymal stem cells. BioMed Research International. 2018, 4387932 (2018).
  23. Moldes, M., et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. The Biochemical Journal. 376, 607-613 (2003).
  24. Ross, S. E., et al. Inhibition of adipogenesis by Wnt signaling. Science. 289 (5481), 950-953 (2000).
  25. Wang, Y. K., Chen, C. S. Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. Journal of Cellular and Molecular Medicine. 17 (7), 823-832 (2013).
  26. Mohsen-Kanson, T., et al. Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3. Stem Cells. 32 (6), 1459-1467 (2014).
  27. Billon, N., et al. The generation of adipocytes by the neural crest. Development. 134 (12), 2283-2292 (2007).
  28. Li, N., Kelsh, R. N., Croucher, P., Roehl, H. H. Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways. Development. 137 (3), 389-394 (2010).
  29. Ussar, S., et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Science Translational Medicine. 6 (247), (2014).
  30. Festy, F., et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochemistry and Cell Biology. 124 (2), 113-121 (2005).
  31. Cai, L., Wang, Z., Ji, A., Meyer, J. M., vander Westhuyzen, D. R. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS One. 7 (5), 36785 (2012).
  32. Mesuret, G., et al. A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) for glycine inhibitory transmission and respiratory pattern. Scientific Reports. 8 (1), 8536 (2018).
  33. Silverstein, R. L., Febbraio, M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Science Signaling. 2 (72), (2009).
  34. Brooimans, R. A., van Wieringen, P. A., van Es, L. A., Daha, M. R. Relative roles of decay-accelerating factor, membrane cofactor protein, and CD59 in the protection of human endothelial cells against complement-mediated lysis. European Journal of Immunology. 22 (12), 3135-3140 (1992).
  35. Davies, A., et al. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. The Journal of Experimental Medicine. 170 (3), 637-654 (1989).
  36. Lapid, K., Graff, J. M. Form(ul)ation of adipocytes by lipids. Adipocyte. 6 (3), 176-186 (2017).
  37. Aldridge, A., et al. Assay validation for the assessment of adipogenesis of multipotential stromal cells–a direct comparison of four different methods. Cytotherapy. 15 (1), 89-101 (2013).
  38. Schaedlich, K., Knelangen, J. M., Navarrete Santos, A., Fischer, B., Navarrete Santos, A. A simple method to sort ESC-derived adipocytes. Cytometry A. 77 (10), 990-995 (2010).
  39. Costa, L. A., et al. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cellular and Molecular Life Sciences: CMLS. 78 (2), 447-467 (2021).

Play Video

Citar este artigo
Aghadi, M., Karam, M., Abdelalim, E. M. Robust Differentiation of Human iPSCs into a Pure Population of Adipocytes to Study Adipocyte-Associated Disorders. J. Vis. Exp. (180), e63311, doi:10.3791/63311 (2022).

View Video