L’administration orale d’ARNd produit par des bactéries, une méthode d’administration de l’interférence ARN (ARNi) couramment utilisée chez Caenorhabditis elegans, a été appliquée avec succès ici aux moustiques adultes. Notre méthode permet des études robustes de génétique inverse et des études de vecteurs bloquant la transmission sans l’utilisation de l’injection.
L’interférence ARN est un outil très utilisé pour l’analyse génétique inverse depuis deux décennies. Chez les moustiques adultes, l’administration d’ARN double brin (ARNds) a été réalisée principalement par injection, ce qui nécessite beaucoup de temps et ne convient pas aux applications sur le terrain. Pour surmonter ces limitations, nous présentons ici une méthode plus efficace pour l’activation robuste de l’ARNi par administration orale d’ARNds à Anopheles gambiae adulte. De longs ARNd ont été produits dans la souche HT115 (DE3) d’Escherichia coli , et une suspension concentrée de bactéries contenant de l’ARNd tuées thermiquement dans du saccharose à 10% a été offerte sur des boules de coton ad-libitum aux moustiques adultes. Les boules de coton ont été remplacées tous les 2 jours pendant toute la durée du traitement. L’utilisation de cette méthode pour cibler le doubleex (un gène impliqué dans la différenciation sexuelle) ou la tête de fourche (qui code pour un facteur de transcription des glandes salivaires) a entraîné une réduction de l’expression du gène cible et / ou du signal d’immunofluorescence des protéines, mesurée par PCR quantitative en temps réel (qRT-PCR) ou microscopie confocale à fluorescence, respectivement. Des défauts dans la morphologie des glandes salivaires ont également été observés. Cette méthode très flexible, conviviale, peu coûteuse et rapide d’administration de l’ARNds pourrait être largement applicable aux gènes cibles importants pour la physiologie des insectes vecteurs et au-delà.
De nombreuses maladies sont transmises par les moustiques, ce qui fait de l’étude de la physiologie et de la génétique des moustiques une entreprise importante. L’utilisation de l’ARNi dans ces organismes a été importante au cours des 20 dernières années et a permis la caractérisation fonctionnelle de nombreux gènes de moustiques 1,2,3,4,5. La technique la plus couramment utilisée pour l’administration d’ARNd a été la microinjection, qui présente l’inconvénient de blesser les moustiques et nécessite beaucoup de temps et d’efforts. Des méthodes d’administration orale d’ARNi ont été testées, mais principalement au stade larvaire des moustiques 6,7,8,9. L’administration orale d’ARNds chez les moustiques adultes n’a pas été pleinement explorée et pourrait être un outil utile pour l’étude de la biologie des vecteurs et de la lutte antivectorielle.
Le paludisme est transmis par les moustiques anophèles lorsqu’un moustique femelle infecté prend un repas de sang d’un hôte non infecté et injecte de la salive contenant des parasites du paludisme10. Pour finalement être transmis dans la salive d’un moustique, le parasite doit surmonter de nombreux obstacles, notamment échapper au système immunitaire des moustiques, traverser la barrière de l’intestin moyen et envahir les glandes salivaires11. L’architecture des glandes salivaires (SG) des moustiques est la clé de l’invasion parasitaire et cette architecture est contrôlée à la fois par des facteurs de transcription clés exprimés par les glandes salivaires ainsi que par des déterminants du dimorphisme sexuel. Plusieurs facteurs de transcription hautement conservés sont nécessaires pour la spécification cellulaire et le maintien homéostatique des glandes salivaires et pour la production et la sécrétion de protéines salivaires qui fonctionnent dans l’alimentation sanguine 12,13,14. La tête de fourche (Fkh) est un facteur de transcription de l’hélice ailée qui fonctionne comme un régulateur majeur de la structure et de la fonction SG de l’insecte (basé sur des études chez les mouches des fruits et la teigne du ver à soie)15,16,17,18,19,20. Dans les SG de drosophiles, Fkh fonctionne avec Sage, un facteur de transcription hélicoïque-boucle-hélice (bHLH) spécifique à SG, pour favoriser la survie sg et la production de salive19. Un co-régulateur important et positif de la production de salive chez la drosophile est CrebA, un facteur de transcription par fermeture éclair de leucine bien étudié qui régule à la hausse l’expression des gènes de la voie sécrétoire 21,22,23. Il existe également un fort degré de différenciation morphologique dans les glandes salivaires féminines qui joue probablement un rôle clé, non seulement dans l’alimentation sanguine, mais aussi dans la capacité des parasites à envahir ce tissu24.
De nombreux gènes impliqués dans la détermination de la survie, de la structure, de la physiologie et du dimorphisme sexuel des glandes salivaires ont des profils d’expression spatio-temporelle complexes 25,26,27, et les méthodes traditionnelles d’administration de l’ARNd pour induire l’ARNi ne sont pas toujours efficaces pour cibler ces types de gènes dans ce tissu ou dans d’autres. Cependant, l’administration orale d’ARNds au stade larvaire Aedes aegypti et de moustiques An. gambiae a été utilisée avec succès pour faire taire la forme spécifique à la femelle du gène dsx 9,28. Des études antérieures utilisant l’ARNds dans les glandes salivaires des moustiques ont révélé que, bien que de grandes quantités d’ARNds aient été nécessaires, l’effet de silencieux était relativement durable (au moins 13 jours)29. Ici, la capacité de la souche HT115 (DE3) d’E. coli tuée par la chaleur exprimant un ARNd spécifique à la séquence pour dsx, fkh ou CrebA à induire le silence de ces gènes par ARNi chez les moustiques femelles adultes a été testée. L’administration orale d’ARNd a induit l’élimination des gènes chez An. gambiae, avec des réductions claires des niveaux d’ARNm et avec des phénotypes compatibles avec la perte de fonction de ces gènes. Ainsi, cette approche fonctionnera probablement pour détruire la fonction d’une variété de gènes des glandes salivaires.
La capacité de délivrer efficacement l’ARNd aux moustiques An. gambiae par voie orale a de vastes implications pour les études de biologie vectorielle en laboratoire et sur le terrain. La microinjection a longtemps été acceptée comme le mode d’administration préféré des produits chimiques, des anticorps, de l’ARNi et des stratégies de modification génétique chez les moustiques43,44. Les conséquences d’une manipulation physique importante, de dommages cellulaires et de stress peuvent être évitées par l’utilisation de l’administration orale, qui pourrait également convenir à des applications à grande échelle ou sur le terrain. Des travaux antérieurs ont suggéré que l’ARNi agit de manière omniprésente chez un moustique adulteindividuel 29, permettant des effets dans tous les tissus, y compris les glandes salivaires. En nourrissant les moustiques avec un grand nombre d’E. coli exprimant l’ARNd qui sont digérés de manière asynchrone sur une longue période, on peut potentiellement obtenir une exposition cohérente et uniforme à l’ARNi chez tous les individus dans une cage. Cette méthode permet de nourrir un grand nombre de moustiques et d’analyser la variabilité potentielle des phénotypes résultants en fonction du gène cible. Cependant, une considération importante est la possibilité d’une distribution hétérogène des bactéries, et donc de l’ARNds, dans la fibre de coton. Les 400 μL de bactéries utilisés quotidiennement pour l’alimentation en sucre des moustiques contiendraient environ ≤4,6 μg d’ARNds, comme décrit et calculé précédemment9, mais la quantité d’ARNds ingérée par chaque moustique n’a pas été déterminée individuellement. Si la construction d’ARNd devient routinière, ce protocole de traitement simple permet une assimilation rapide de cette technique par tout chercheur sur les moustiques. A priori, le temps passé pendant le traitement (30 min par jour) est insignifiant par rapport au temps nécessaire pour apprendre et appliquer la microinjection à des échantillons de taille similaire.
L’alimentation en ARNds est couramment utilisée pour des études de génétique inverse dans l’organisme modèle Caenorhabditis elegans45. Ce niveau élevé d’utilisation souligne la valeur de l’approche d’administration orale. La construction d’une bibliothèque à l’échelle du génome d’An. gambiae dans E. coli transformé, similaire à celle qui existe dans C. elegans46,47, permettrait un dépistage génétique inversé rapide chez les moustiques à une échelle accrue. Cependant, il est important de noter que l’efficacité de la méthode dépend dans une large mesure des niveaux endogènes de transcription et si l’expression n’est pas limitée au tissu cible mais exprimée plus largement 4,8,44. En outre, il existe des preuves que certains insecticides pourraient induire un évitement comportemental des moustiques48, et se nourrir avec des bactéries qui induisent potentiellement des effets indésirables en eux pourrait déclencher des modèles similaires d’évitement. Dans le cadre contrôlé du laboratoire, où les moustiques n’avaient pas de source de nourriture alternative, ils n’avaient pas le choix d’éviter l’eau sucrée avec E. coli et le besoin d’une source nutritive l’emporterait probablement sur l’instinct d’éviter les bactéries. Toutefois, cela devrait être envisagé si la stratégie devait être utilisée dans des contextes moins contrôlés.
Il peut être possible de cibler plusieurs gènes simultanément (en utilisant une construction, plusieurs constructions ou un mélange d’isolats bactériens transformés), mais d’autres études sont nécessaires pour évaluer l’efficacité. Une autre considération importante à ce stade est l’évaluation des effets hors cible ou synergiques possibles lors de l’utilisation de cibles uniques ou multiples. L’établissement de gènes et de groupes de contrôle appropriés est une partie importante de la conception expérimentale. De plus, il est tentant de spéculer que cette approche pourrait être utilisée pour cibler d’autres agents pathogènes ou virus49. Des travaux antérieurs sur l’induction de l’ARNi chez les moustiques ont été effectués dans des conditions où le réactif était directement injecté, de sorte que E. coli n’était pas présent. E. coli peut fournir un compartiment protecteur permettant la libération plus lente de l’ARNds au fil du temps, garantissant que l’exposition est plus ou moins continue sur une période beaucoup plus longue29.
Enfin, ces résultats montrent que les effets de cette technique sont accordables en ajustant le délai (durée et jour de début) de l’exposition et la quantité d’E. coli utilisée. Cette fonctionnalité nous a permis d’étudier les fonctions des gènes essentiels (dsx et fkh) en identifiant les conditions optimales de knockdown par essais et erreurs. Cela augmente considérablement la probabilité que les gènes cibles d’intérêt puissent être étudiés à l’aide de cette technique.
En résumé, il a été constaté que l’administration orale d’ARNi aux moustiques adultes peut être simple, polyvalente et une approche puissante pour étudier la fonction des gènes des moustiques et pour la création d’outils nouveaux et malléables pour la lutte antivectorielle des maladies transmises par les moustiques.
The authors have nothing to disclose.
Les auteurs tiennent à remercier le personnel et les scientifiques de la Direction de l’entomologie et de la Division des maladies parasitaires et du paludisme du CDC, ainsi que Brian Trigg et Michelle Chiu pour leur aide à la préparation des bactéries à JHU et / ou des discussions utiles sur ce travail. Nous remercions l’insectaire JHMRI et le directeur Chris Kizito pour l’accès et l’élevage des moustiques An. gambiae . Nous remercions Wei Huang (JHSPH) pour son aide dans l’obtention des plasmides PJet GFP et pPB47 GFP pour une utilisation dans cette étude. Le financement de ce travail a été fourni par: NIH R21AI153588 (à DJA), une bourse postdoctorale du Johns Hopkins Malaria Research Institute (à MW); et par une subvention de la Good Ventures Foundation et de l’Open Philanthropy Project à la CDC Foundation intitulée Support cryopreservation and suppression of female development in mosquitoes to help research for malaria, Open Philanthropy Project, 2017. Nous apprécions profondément l’aide du personnel du JHU Microscope Facility et le soutien de subvention applicable des NIH pour le microscope utilisé (NIH Grant #: S10OD016374). Les résultats et conclusions de ce manuscrit sont ceux des auteurs et ne représentent pas nécessairement les points de vue du CDC. L’utilisation de noms commerciaux est uniquement à des fins d’identification et n’implique pas l’approbation des Centers for Disease Control and Prevention, du Public Health Service ou du département américain de la Santé et des Services sociaux.
1 Kb Plus DNA Ladder | Thermo Fisher Scientific | 10787018 | |
2x Yeast Extract Tryptone (2xYT) Medium | BD Difco | DF0440-17 | |
AAPP | n/a | n/a | Antisera. 1:50 dilution (rabbit); gift from Fabrizio Lombardo |
AccuStart II PCR Supermix | Quantabio | 95137-100 | |
Agarose | Millipore Sigma | A9539 | |
Ampicillin | Millipore Sigma | A5354 | |
Anopheles gambiae G3 | BioDefense and Emerging Infections (BEI) Malaria Research and Reference Reagent Resource Center (MR4) | MRA-112 | |
BugDorm | BioQuip | 1452 | |
Centrifuge 5810R | Eppendorf | P022628181 | |
CrebA | DSHB | CrebA Rbt-PC | Antisera. 1:50 dilution (rabbit); generated by the Andrew Lab |
Damiens diet | BioServ | ||
DAPI | Life Technologies | n/a | 4′,6-diamidino-2-phenylindole; 1:200 dilution. |
Defibrinated sheep blood | HemoStat | DSB050 | |
Escherichia coli HT115 (DE3) | |||
Ethidium bromide | Millipore Sigma | E7637 | |
High-Capacity cDNA Reverse Transcription Kit | Thermo Fisher Scientific | 4368814 | |
Isopropyl β-D-1-thiogalactopyranoside | Millipore Sigma | I5502 | |
JM109 Competent cells | Promega | L2005 | |
Luria Broth Media | Thermo Fisher Scientific | 10855001 | |
Mucin 2 | Proteintech | Muc2; 27 675-1-AP | Antisera. 1:100 dilution (mouse). |
Nanodrop 2000 | Thermo Fisher Scientific | ||
Nile Red | Sigma | n/a | Lipid dye; 1:50 dilution. |
Owl EasyCast B2 Mini Gel Horizontal Electrophoresis | Thermo Fisher Scientific | Model B2 | |
pGEMT easy | Promega | A3600 | |
Power SYBR-green PCR master MIX | Applied Biosystems | 4367659 | |
PureLink PCR purification kit | Thermo Fisher Scientific | K31001 | |
QuantaStudio 6 | Applied Biosystems | ||
QuantStudio6 Real Time PCR System | Applied Biosystems | ||
Rab11 | n/a | n/a | Antisera. 1:100 dilution (rabbit); generated by the Andrew Lab |
Rh-WGA | Vector Labs | n/a | Rhodamine-conjugated wheat germ agglutinin (chitin, O-GlcNAcylation dye); 1:40 dilution |
Sage | n/a | n/a | Antisera. 1:50 dilution (rat); generated by the Andrew Lab |
T4 DNA ligase | Promega | M1801 | |
Tetracycline | Millipore Sigma | 87128 | |
Trizol | Thermo Fisher Scientific | 15596018 | |
Zeiss LSM700 fluorescence confocal microscope | Zeiss | ||
ANTIBODIES | |||
Chicken anti-Rat IgG (H+L), Alexa Fluor 647 | Thermo Fisher Scientific | A21472 | |
Goat anti-Mouse IgG (H+L), Alexa Fluor 647 | Thermo Fisher Scientific | A28181 | |
IgG (H+L) Goat anti-Rabbit, Alexa Fluor 488 | Thermo Fisher Scientific | A27034 | |
Rabbit anti-Goat IgG (H+L), Alexa Fluor 488 | Thermo Fisher Scientific | A27012 | |
PRIMERS | |||
ACT-2f: TACAACTCGATCATGAAGTGCGA | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
ACT-3r: CCCGGGTACATGGTGGTACCGC CGGA |
CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
FKH_RNAi_F: GCCGACTTATGCTTAGCCCA | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
FKH_RNAi_R: TAGCCGTCAATTCCTCCTGC | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
newDSX-f: AGAGGGCGGGGAAATTCTAGT | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
newDSX-r: GGGCTTGTGGCAGTACGAATA | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
S7qf1: AGAACCAGCAGACCACCATC | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |
S7qr1: GCTGCAAACTTCGGCTATTC | CDC Biotechnology Core Facility Branch | n/a | qRT-PCR primer |