Summary

培养的 果蝇 脑外植体中的神经干细胞再激活

Published: May 18, 2022
doi:

Summary

已经建立了一种在培养的 果蝇 脑外植体中重新激活静止神经干细胞的方法。使用这种方法,全身信号的作用可以从组织内在信号中分离出来,调节神经干细胞的静止,进入和退出。

Abstract

神经干细胞(NSC)具有增殖,分化,进行细胞凋亡甚至进入和退出静止的能力。其中许多过程是由NSC内在遗传程序与NSC外在因素(局部和系统性)之间的复杂相互作用控制的。在遗传模式生物体中, 黑腹果蝇NSCs,称为神经母细胞(NBs),在胚胎到幼虫的转变过程中从静止到增殖。在此期间,幼虫从蛋壳中出来并开始爬行,寻找饮食营养。作为对动物喂养的反应,脂肪体,具有脂质储存能力的内分泌器官,产生信号,该信号被系统地释放到循环血淋巴中。作为对脂肪体源信号(FBDS)的反应, 果蝇 胰岛素样肽(Dilps)产生并从脑神经分泌神经元和神经胶质细胞释放,导致NBs及其神经胶质和气管生态位中PI3激酶生长信号传导的下游激活。虽然这是NBs如何从静止转向增殖的当前模型,但FBDS外在线索的性质仍然难以捉摸。为了更好地了解NB外在系统性线索如何调节静止状态,开发了一种在动物喂养前体外培养早期幼虫大脑的方法。使用这种方法,可以将外源因子提供给培养基并测定NB从静止中退出。我们发现,外源性胰岛素足以使NBs从全脑外植体的静止中重新激活。由于这种方法非常适合大规模筛选,因此我们的目标是识别调节NB静止与增殖决策的其他外在线索。由于调节NSC增殖决定的基因和途径在进化上是保守的,因此该测定的结果可以为改善临床再生疗法提供见解。

Introduction

干细胞因其在再生医学中的潜力而引起人们的极大兴趣12。许多动物,特别是那些长寿的动物,在成年组织中维持干细胞。这些常驻干细胞具有维持组织稳态的功能,并用于物理损伤或疾病后的修复34。成体动物中的大多数干细胞是静止的,一种相对休眠的状态,其特征在于细胞周期停滞和生长信号传导失活5。作为对外在线索的反应,干细胞从静止中退出,进入细胞周期并开始产生特定于其组织类型的子后代。例如,为了建立有效的免疫应答,抗原呈递细胞诱导静止的幼稚T细胞进入细胞周期并克隆扩增6.作为对骨骼肌损伤的反应,肌肉卫星干细胞进入细胞周期并产生子成肌细胞以取代受损的肌原纤维57。虽然很明显,静止的干细胞对外在信号有反应,但在许多情况下,外在线索的性质以及线索诱导的干细胞活化的机制仍然不清楚。更好地了解静止干细胞如何响应外在线索并进入细胞周期将有助于在临床上开发更好的干细胞疗法并增加科学知识。

几十年来,模式生物一直被用来揭示在发育和成年期调节干细胞增殖的基因和细胞信号通路。在 果蝇中,神经干细胞(NSC),称为神经母细胞(NBs),在整个发育过程中分裂,产生所有神经元和神经胶质细胞,最终整合,形成大脑功能所需的神经回路89。像其他干细胞一样,NBs不对称地分裂以进行自我更新,并且在某些情况下,对称地扩展干细胞库。在胚胎发生期间指定NBs,并且大多数在接近结束时进入静止状态,这与母体营养储存的减少相吻合(图1)。胚胎发生完成后,幼虫孵化并开始进食。作为对动物喂养的反应,NBs从静止中重新激活并恢复细胞分裂10111213141516。由于 果蝇 CNS相对简单,并且由于NBs在规定时间进入和退出静止,因此使用 果蝇 来研究静止,进入和退出的调节被证明是理想的。

Figure 1
图1:CB NBs(中枢脑神经母细胞,红色)和MB NBs(蘑菇体神经母细胞,蓝色)在发育过程中的相对增殖。 在胚胎发生结束时,大多数NBs(红线)停止增殖并进入静止状态。静止一直持续到刚孵化的幼虫吃完第一顿完整的食物。该方法的时间焦点以红色圆圈表示(1,静止和2,重新激活)。MB NBs(蓝色)是在整个发育过程中连续分裂的中枢脑NBs的一个子集(每个大脑半球4个)。 请点击此处查看此图的大图。

作为对动物喂养的反应,PI3激酶和TOR生长信号通路在NBs及其神经胶质和气管生态10,111516中变得活跃。当膳食营养素被撤回或当PI3激酶水平降低时,NBs无法重新激活,神经胶质细胞和气管的生长也减少了10111516。目前的模型假设NB再激活与脂肪体的幼虫生长耦合,其释放系统信号以响应动物喂养121718。这种信号仍然难以捉摸,可能促进果胰岛素样肽(Dilps)在大脑中的表达和释放,从而导致NBs及其神经胶质和气管生态位中PI3激酶的下游激活。为了更好地了解系统线索的性质,我们开发了一种在培养的大脑外植体中重新激活静止NBs的方法。使用这种方法,可以在没有整个动物全身线索的情况下测定NBs的再激活。外源因子可以重新供应到培养基中,并且基于掺入胸苷类似物EdU的NB再活化测定。使用这种方法,我们确定外源性胰岛素足以重新激活大脑外植体中的静止NBs。未来的工作将旨在确定其他因素,当添加回去时,这些因素会积极或消极地调节大脑外植体中的NB静止。

Protocol

1. 果蝇 幼虫收集 注意:在开始之前,请准备酵母盘,葡萄糊和Fly公寓: 酵母糊:在小容器中,将5克活性干酵母与10毫升水混合,形成具有花生酱稠度的糊状物。用保鲜膜盖住酵母糊,并用橡皮筋将其牢固地固定在容器上。注意:新鲜的酵母糊会在其容器中膨胀,除非牢固地附着,否则会从盖子上弹出。酵母糊将在室温(RT)下持续数天。 <l…

Representative Results

新鲜孵化的OregonR野生型大脑在补充胰岛素的施耐德培养基(SSM)中解剖并培养24小时。根据方案固定和组织染色。使用针对Deadpan(Dpn)产生的一抗来检测NBs和Scribble来标记细胞膜。加入胸苷类似物5-乙炔基-2′-脱氧尿苷(Edu)以检测S相进入和NB再活化。我们在培养24小时后发现大尺寸的Edu阳性和Dpn阳性NBs(图6A-C)。接下来,将新鲜孵化的OregonR野生型…

Discussion

这里描述的培养大脑外植体的方法可以在大多数实验室环境中进行。所需的工具以及程序和数据收集都简单明了。通过这种方法,人们可以测试各种假设,包括与细胞信号传导级联和调节NB再激活和增殖的外在因素相关的假设。在这里,使用野生型OregonR动物,我们发现外源性胰岛素足以独立于其他动物特异性全身线索的静止中重新激活NBs。使用GAL4 / UAS系统,还可以以细胞类型特异性方式敲低或过…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢LSAMP Bridges to Doctorate计划(CNK)以及NIH / NIGMS(R01-GM120421和R35-GM141886)。我们感谢 Conor Sipe 博士提供图 1。我们也感谢所有Siegrist实验室成员的持续支持和指导。我们特别感谢Chhavi Sood和Gary Teeters仔细阅读手稿并提供评论。

Materials

10 µL Pipette tips Denville Sci P2102
1000 µL Pipette tips Denville Sci P2103-N
1000 µL Pipettor Gilson P1000
16% paraformaldehyde (10 x 10 mL) Electron Microscopy Sciences 2912.60.0000 Used for Fixation of Larval Brains
20 µL Pipette Gilson P20
200 µL Pipette tips Gilson P200
200 µL Pipette tips Denville Sci 1158U56
24-well multiwell culture plates Fisher Scientific 50-197-4477
35 mm Petri dishes Fisher Scientific 08-757-100A Grape Plate Ingredients
4 °C refrigerator Fisher Scientific Provides an ideal temperature for >24 h incubations in antibody solution
63x Objective Lecia
Active dry yeast Most supermarkets
Agarose Fisher Scientific 214010 Grape Plate Ingredients
Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 647 dye Thermo Fisher Scientific C10340 to label proliferating cells
Confocal Microscope Leica SP8
Coverslips 22 mm x 22 mm x 1 mm , 10 pack of 4 oz Fisher Scientific 12-544-10 Two Coverslips are super glued to the ends of the microscope slide. This creates a space that allows for the brains to float in antifade while being imaged.
Coverslips, 22 mm x 50 mm x 1 mm Fisher Scientific 12-545E The coverslip is placed on two square coverslips on the microscope slide ensuring that the brain in the antifade does not move while imaging.
Dissecting microscope Zeiss Stemi 2000
Ethanol 200 proof (100%), Decon Labs, 1 gallon bottle Fisher Scientific 2701 Used to wash off the larvae before the 24 hr hold in culture medium
Fetal Bovine Serum (10%) Sigma F4135-100ML Supplement for cell culture media.
Fine forceps for dissection Fine Science Tools 11295-20 Forcepts used in disections. They work best when sharpened.
Fly Bottles for Crossing Genessee Scientific 32-130 This bottle is used as a container that lets the flies lay eggs on the grape plate.
Glass Dissection Dish (3 well) These are no longer available
Glutathione Sigma G6013 Provides oxidative protection during cell culture.
Goat Serum Sigma G9023- 10ML Blocking Agent
Grape Plates Made in house Made in house Grape juice/agarose plates for collecting freshly hatched eggs
Image J Imagej.net/fiji/downloads Free Download:  https://fiji.sc Imaging platform that is used to count cells and Edu reactivation
Incubator Thermo Fisher Scientific Ensures that the temperature, humidity, and light exposure is exactly the same throughout experiment.
Insulin Sigma I0516 Independant variable of the experiment
Laminar flow hood For aliquoting culture media
L-Glutamine Sigma G7513 Provides support during cell culture
Nunc 72-well Microwell Mini Trays Fisher Scientific 12-565-154 Immunostaining steps are performed in this tray
Parafilm Fisher Scientific S37440 Film used to seal plates in order to prevent evaporation
Pen-Strep Sigma P4458-100ml Antibiodics used to prevent bacterial contamination of cells during culture.
Phosphate Buffer, pH7.4 Made in house Made in house Solvent used to wash the brains after fixing and staining steps
Pick Fine Science Tools 10140-01 Used to pick larvae off of the grape plate
Propionic acid Fisher Scientific A-258 Grape Plate Ingredients
Rabbit 405 Abcam ab175653 Antibodies used for immunostaining
Rat 555 Abcam ab150166 Antibodies used for immunostaining
Rb Scribble A Gift from Chris Doe Antibodies used for immunostaining
Rt Deadpan Abcam ab195173 Antibodies used for immunostaining
Schneiders Culture Medium Life Tech 21720024 Contains nutrients that help the cells grow and proliferate
SlowFade Diamond Antifade (5 x 2 mL) Life Tech S36963 Reagent that provides protection against fading fluorophores
Sterile Water Autoclave Milli-Q water made in house Needed for Solutions
Sucrose Fisher S2-12 Grape Plate Ingredients
Superfrost Microscope Slides Fisher Scientific 12-544-7
Superglue Most supermarkets
Tegosept Genesee Scientific 20-259 Grape Plate Ingredients
Triton-X 100 Sigma T9284-100ML PBT
Welch's 100% grape grape juice Most supermarkets Grape Plate Ingredients

Referências

  1. Suman, S., Domingues, A., Ratajczak, J., Ratajczak, M. Z. Potential clinical applications of stem cells in regenerative medicine. Advances in Experimental Medicine and Biology. 1201, 1-22 (2019).
  2. Tabar, V., Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics. 15, 82-92 (2014).
  3. Daley, G. Q. Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 370, 20140376 (2015).
  4. Rodrigues, M., Kosaric, N., Bonham, C. A., Gurtner, G. C. Wound healing: A cellular perspective. Physiological Reviews. 99, 665-706 (2019).
  5. van Velthoven, C. T. J., Rando, T. A. Stem cell quiescence: Dynamism, restraint, and cellular idling. Cell Stem Cell. 24, 213-225 (2019).
  6. Chapman, N. M., Boothby, M. R., Chi, H. Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology. 20, 55-70 (2020).
  7. Wosczyna, M. N., Rando, T. A. A muscle stem cell support group: Coordinated cellular responses in muscle regeneration. Developmental Cell. 46, 135-143 (2018).
  8. Homem, C. C., Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development. 139, 4297-4310 (2012).
  9. Kang, K. H., Reichert, H. Control of neural stem cell self-renewal and differentiation in Drosophila. Cell and Tissue Research. 359, 33-45 (2015).
  10. Chell, J. M., Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 143, 1161-1173 (2010).
  11. Sousa-Nunes, R., Yee, L. L., Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 471, 508-512 (2011).
  12. Britton, J. S., Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development. 125, 2149-2158 (1998).
  13. Lin, S., et al. Extremes of lineage plasticity in the Drosophila brain. Current biology : CB. 23, 1908-1913 (2013).
  14. Sipe, C. W., Siegrist, S. E. Eyeless uncouples mushroom body neuroblast proliferation from dietary amino acids in Drosophila. Elife. 6, 26343 (2017).
  15. Speder, P., Brand, A. H. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. Elife. 7, 30413 (2018).
  16. Yuan, X., Sipe, C. W., Suzawa, M., Bland, M. L., Siegrist, S. E. Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biology. 18, 3000721 (2020).
  17. Colombani, J., et al. A nutrient sensor mechanism controls Drosophila growth. Cell. 114, 739-749 (2003).
  18. Geminard, C., Rulifson, E. J., Leopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metabolism. 10, 199-207 (2009).
  19. Siller, K. H., Serr, M., Steward, R., Hays, T. S., Doe, C. Q. Live imaging of Drosophila brain neuroblasts reveals a role for Lis1/dynactin in spindle assembly and mitotic checkpoint control. Molecular Biology of the Cell. 16, 5127-5140 (2005).
  20. Prithviraj, R., Trunova, S., Giniger, E. Ex vivo culturing of whole, developing Drosophila brains. Journal of Visualized Experiments: JoVE. (65), e4270 (2012).
  21. Bostock, M. P., et al. An immobilization technique for long-term time-lapse imaging of explanted drosophila tissues. Frontiers in Cell and Developmental Biology. 8, 590094 (2020).
  22. Datta, S. Activation of neuroblast proliferation in explant culture of the Drosophila larval CNS. Brain Research. 818, 77-83 (1999).
check_url/pt/63189?article_type=t

Play Video

Citar este artigo
Naomi Keliinui, C., Doyle, S. E., Siegrist, S. E. Neural Stem Cell Reactivation in Cultured Drosophila Brain Explants. J. Vis. Exp. (183), e63189, doi:10.3791/63189 (2022).

View Video