Summary

体内 熟练运动行为的无线光遗传学控制

Published: November 22, 2021
doi:

Summary

本实验方案描述了如何在单个颗粒到达抓取任务中使用无线光遗传学与高速摄像相结合,以表征参与自由移动小鼠中熟练运动行为表现的神经回路。

Abstract

精细运动技能在日常生活中是必不可少的,在几种神经系统疾病中可能会受到损害。这些任务的获取和执行需要感觉 – 运动整合,并涉及对双侧脑回路的精确控制。在动物模型中实施单手动行为范式将提高对大脑结构(如纹状体)对复杂运动行为的贡献的理解,因为它允许在任务执行期间在控制条件和疾病中操纵和记录特定细胞核的神经活动。

自创建以来,光遗传学一直是通过对神经元群体进行选择性和靶向激活或抑制来询问大脑的主要工具。光遗传学与行为测定的结合揭示了特定大脑功能的潜在机制。带有小型发光二极管(LED)的无线头戴式系统允许在完全自由移动的动物中进行远程光遗传学控制。这避免了有线系统对动物行为限制较少的限制,而不会影响发光效率。目前的协议将无线光遗传学方法与高速摄像相结合,用于单手动灵巧性任务,以剖析特定神经元群体对精细运动行为的贡献。

Introduction

在我们执行的大多数运动中都存在运动技能行为,并且已知在几种脑部疾病中受到影响123456。实施允许研究熟练运动的发展,学习和表现的任务对于理解运动功能的神经生物学基础至关重要,特别是在脑损伤,神经退行性和神经发育障碍的模型中278910111213.在日常生活行动中,伸手和取回物体是常规的,这是在早期发育过程中获得的首批运动技能之一,然后在56年中得到完善。它包括一种复杂的行为,需要感觉运动过程,例如对物体特征的感知,运动计划,动作选择,运动执行,身体协调和速度调制7141516。因此,单手动高灵活性任务需要两个半球的许多大脑结构的参与1617,1819202122。在小鼠中,单个颗粒伸手抓取任务的特征是可以单独控制和分析的几个阶段71323。该特征允许研究特定神经元亚群在不同阶段的习得和行为表现的贡献,并为运动系统的详细研究132324提供平台。运动发生在几秒钟内;因此,高速摄像应用于熟练运动轨迹725的不同阶段的运动学分析。可以从视频中提取几个参数,包括身体姿势,轨迹,速度和错误类型25。运动学分析可用于检测无线光遗传学操作过程中的细微变化723

使用小型化发光二极管(LED)通过无线头戴式系统传递光,可以在动物执行任务时进行远程光遗传学控制。无线光遗传学控制器接受来自刺激器的单脉冲或连续触发命令,并将红外(IR)信号发送到连接到微型LED2326的接收器。目前的方案将这种无线光遗传学方法与灵巧性任务的高速摄像相结合,以剖析特定神经元群体在精细运动行为执行期间的作用23。由于这是一项单项任务,因此可以评估两个半球结构的参与情况。传统上,大脑以高度不对称的方式控制身体运动;然而,高灵巧性任务需要许多大脑结构的仔细协调和控制,包括同侧核和细胞核10,20,212223内神经元亚群的差异贡献。该协议表明,来自两个半球的皮质下结构控制前肢23的轨迹。这种范式可以适用于研究脑部疾病的其他大脑区域和模型。

Protocol

涉及动物使用的程序按照当地和国家指南进行,并得到相应的机构动物护理和使用委员会(细胞生理学研究所IACUC协议VLH151-19)的批准。Drd1-Cre转基因雄性小鼠27,产后35-40天,C57BL / 6背景在当前方案中使用。小鼠在以下条件下保存:温度22±1°C;湿度 55%;光照计划12/12小时,晚上7点熄灯,并在产后第21天断奶。断奶的幼崽被安置在2-5的同性组中。动物被安置在带有微屏障顶部的静态?…

Representative Results

伸手可及的任务是一种范式,广泛用于研究不同实验操作下精细技能运动的塑造,学习,表现和运动学。小鼠在几天内学会执行任务,并在训练5天后达到平台,准确率超过55%(图2A,B)。与之前报道的类似,一定比例的动物没有适当地执行任务(29.62%),这些动物应从进一步分析中排除30。这些包括非学习小鼠的子集(6/54只小鼠,11.1%),从?…

Discussion

在明确定义的行为范式中使用神经元群体的光遗传学操作正在推进我们对运动控制机制的知识723。无线方法特别适用于需要对多种动物进行测试或自由移动的任务3435。然而,随着技术和设备的改进,它应该是任何行为任务与光遗传学相结合的首选3436

<p …

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了UNAM-PAPIIT项目 IA203520的支持。我们感谢IFC动物设施在小鼠菌落维护方面的帮助和IT支持的计算单元,特别是Francisco Perez-Eugenio。

Materials

Anaesthesia machine RWD R583S Isoflurane vaporizer
Anesket PiSA Ketamine
Breadboard Thorlabs MB3090/M Solid aluminum optical breadboard
Camera lense Canon 50mmf/ 1.4 manual focus lenses (c-mount)
Camera system BrainVision MiCAM02 Camera controller and synchronizer
Cotton swabs
CS solution PiSA Sodium chloride solution 9%
Customized training chamber In house
Drill bit #105 Dremel 2 615 010 5AE Engraving cutter
Dustless precission chocolate pellets Bio-Serv F05301
Ethyl Alcohol J.T.  Baker 9000-02 Ethanol
Eyespears Ultracell 40400-8 Eyespears of absorbent PVA material
Fluriso VetOne V1 502017-250 Isoflurane
Glass capillaries Drumond Scientific 3-000-203-G/X Pipettes for NanoJect II
Hidrogen peroxide Farmacom Antiseptic
High-speed camera BrainVision MiCAM02-CMOS Monochrome high-speed cameras
Infrared emmiter Teleopto
Insulin syringe
LED cannula Teleopto TelC-c-l-d LED cannula 250um 487nm light
Micropipette 10 uL Eppendorf Z740436
Micro-pipette puller Sutter P-87 Horizontal puller
Microscope LSM780 Zeiss Confocal microscope
Microtome
Mock receiver Teleopto
NanoJect II Drumond Scientific 3-000-204 Micro injector
Oxygen tank Infra na
pAAV-EF1a-double.floxed-hChR2(H134R)-mCherry-WPRE- HGHpA Addgene 20297 Viral vector for ChR-2 expression
Parafilm
Paraformaldehyde Sigma P-6148
Phosphate saline buffer Sigma P-4417 Phosphate saline buffer tablets
Pipette tips 10 uL ThermoFisher AM12635 0.5-10 uL  volume
Pisabental PiSA Sodium pentobarbital
Plexiglass commercial Acrylic sheet
Povidone iodine Farmacom Antiseptic
Procin PiSA Xylacine
Puralube Perrigo pharma 1228112 Eye lubricant 15% mineral oil/85% petrolatum
Rotary tool Kmoon Mini grinder Standard
Scalpel
Scalpel blade
Stereotaxic apparatus Stoelting 51730D Digital apparatus
Super-Bond C&B Sun Medical Dental cement
Surgical dispossable cap
Teleopto remote controller Teleopto
Tg Drd1-Cre mouse line Gensat 036916-UCD Transgene insertion FK150Gsat
Tissue adhesive 3M Vetbond 1469SB
TPI Vibratome 1000 plus Peico Microtome
Vectashield mounting media with DAPI Vector laboratories H-1200 Mounting media
Wireless receiver Teleopto TELER-1-P

Referências

  1. Balbinot, G., et al. Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Scientific Report. 8 (1), 8738 (2018).
  2. Klein, A., Sacrey, L. A., Whishaw, I. Q., Dunnett, S. B. The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neuroscience & Biobehavioral Reviews. 36 (3), 1030-1042 (2012).
  3. MacLellan, C. L., Gyawali, S., Colbourne, F. Skilled reaching impairments follow intrastriatal hemorrhagic stroke in rats. Behavioural Brain Research. 175 (1), 82-89 (2006).
  4. Evenden, J. L., Robbins, T. W. Effects of unilateral 6-hydroxydopamine lesions of the caudate-putamen on skilled forepaw use in the rat. Behavioural Brain Research. 14 (1), 61-68 (1984).
  5. Rodgers, R. A., Travers, B. G., Mason, A. H. Bimanual reach to grasp movements in youth with and without autism spectrum disorder. Frontiers in Psychology. 9, 2720 (2019).
  6. Sacrey, L. A. -. O., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M. The reach-to-grasp movement in infants later diagnosed with autism spectrum disorder: a high-risk sibling cohort study. Journal of Neurodevelopmental Disorders. 10 (1), 41 (2018).
  7. Azim, E., Jiang, J., Alstermark, B., Jessell, T. M. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature. 508 (7496), 357-363 (2014).
  8. Marques, J. M., Olsson, I. A. Performance of juvenile mice in a reach-to-grasp task. Journal of Neuroscience Methods. 193 (1), 82-85 (2010).
  9. Miklyaeva, E. I., Castaneda, E., Whishaw, I. Q. Skilled reaching deficits in unilateral dopamine-depleted rats: Impairments in movement and posture and compensatory adjustments. The Journal of Neuroscience. 14 (11), 7148-7158 (1994).
  10. Vaidya, M., Kording, K., Saleh, M., Takahashi, K., Hatsopoulos, N. G. Neural coordination during reach-to-grasp. Journal of Neurophysiology. 114 (3), 1827-1836 (2015).
  11. Wang, X., et al. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell. 171 (2), 440-455 (2017).
  12. Xu, T., et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 462 (7275), 915-919 (2009).
  13. Ian, Q. W., Sergio, M. P. The structure of skilled forelimb reaching in the rat: A proximally driven movement with a single distal rotatory component. Behavioural Brain Research. 41 (1), 49-59 (1990).
  14. Proske, U., Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews. 92 (4), 1651-1697 (2012).
  15. Yttri, E. A., Dudman, J. T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature. 533 (7603), 402-406 (2016).
  16. Donchin, O., Gribova, A., Steinberg, O., Bergman, H., Vaadia, E. Primary motor cortex is involved in bimanual coordination. Nature. 395 (6699), 274-278 (1998).
  17. Brus-Ramer, M., Carmel, J. B., Martin, J. H. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. The Journal of Neuroscience. 29 (19), 6196-6206 (2009).
  18. d’Avella, A., Saltiel, P., Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience. 6 (3), 300-308 (2003).
  19. Fattori, P., et al. Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. The Journal of Neuroscience. 29 (6), 1928-1936 (2009).
  20. vanden Berg, F. E., Swinnen, S. P., Wenderoth, N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS One. 6 (3), 17742 (2011).
  21. vanden Berg, F. E., Swinnen, S. P., Wenderoth, N. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. Journal of Cognitive Neuroscience. 23 (11), 3456-3469 (2011).
  22. Verstynen, T., Diedrichsen, J., Albert, N., Aparicio, P., Ivry, R. B. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. Journal of Neurophysiology. 93 (3), 1209-1222 (2005).
  23. Lopez-Huerta, V. G., et al. Striatal bilateral control of skilled forelimb movement. Cell Reports. 34 (3), 108651 (2021).
  24. Lopez-Huerta, V. G., et al. The neostriatum: two entities, one structure. Brain Structure and Function. 221 (3), 1737-1749 (2016).
  25. Becker, M. I., Calame, D. J., Wrobel, J., Person, A. L. Online control of reach accuracy in mice. Journal of Neurophysiology. 124 (6), 1637-1655 (2020).
  26. Jaidar, O., et al. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. European Journal of Neuroscience. 49 (11), 1512-1528 (2019).
  27. Gong, S., et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. The Journal of Neuroscience. 27 (37), 9817-9823 (2007).
  28. Rowland, N. E. Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comparative Medicine. 57 (2), 149-160 (2007).
  29. Ullman-Culleré, M. H., Foltz, C. J. Body condition scoring: a rapid and accurate method for assessing health status in mice. Laboratory Animal Science. 49 (3), 319-323 (1999).
  30. Chen, C. C., Gilmore, A., Zuo, Y. Study motor skill learning by single-pellet reaching tasks in mice. Journal of Visualized Experiments. (85), e51238 (2014).
  31. Fink, A. J., et al. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature. 509 (7498), 43-48 (2014).
  32. Li, Q., et al. Refinement of learned skilled movement representation in motor cortex deep output layer. Nature Communication. 8, 15834 (2017).
  33. Overduin, S. A., d’Avella, A., Carmena, J. M., Bizzi, E. Microstimulation activates a handful of muscle synergies. Neuron. 76 (6), 1071-1077 (2012).
  34. Miyazaki, T., et al. Large Timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles. Cell Reports. 26 (4), 1033-1043 (2019).
  35. Yang, Y., et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience. 24 (7), 1035-1045 (2021).
  36. Kampasi, K., et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Scientific Reports. 6, 30961 (2016).
  37. Allen, B. D., Singer, A. C., Boyden, E. S. Principles of designing interpretable optogenetic behavior experiments. Learning & Memory. 22 (4), 232-238 (2015).
  38. Packer, A. M., et al. . Nature Methods. 9, 1202-1205 (2012).

Play Video

Citar este artigo
Rodriguez-Munoz, D. L., Jaidar, O., Palomero-Rivero, M., Arias-Garcia, M. A., Arbuthnott, G. W., Lopez-Huerta, V. G. In Vivo Wireless Optogenetic Control of Skilled Motor Behavior. J. Vis. Exp. (177), e63082, doi:10.3791/63082 (2021).

View Video