대사 적응은 분화, 지속성 및 세포 독성을 지시하기 때문에 T 세포의 기본입니다. 여기서, 생체외 사이토카인-분화된 인간 일차 T 세포에서 미토콘드리아 호흡을 모니터링하기 위한 최적화된 프로토콜이 제시된다.
활성화하는 동안, T 세포의 신진 대사는 그들의 운명에 영향을 미치는 변화에 적응합니다. 미토콘드리아 산화 인산화의 증가는 T 세포 활성화에 필수적이며, 기억 T 세포의 생존은 미토콘드리아 리모델링에 의존한다. 결과적으로, 이것은 암 면역 요법의 장기적인 임상 결과에 영향을 미칩니다. T 세포 질의 변화는 종종 대사 상태에 의한 것이 아니라 잘 알려진 표면 마커를 사용하는 유세포 측정에 의해 연구됩니다. 이것은 세포외 플럭스 분석기와 T 세포 대사에 다르게 영향을 미치는 사이토카인 IL-2 및 IL-15를 사용하여 일차 인간 T 세포의 실시간 미토콘드리아 호흡을 측정하기 위한 최적화된 프로토콜입니다. T 세포의 대사 상태는 대사 경로에서 주요 복합체를 억제할 때 산소 소비량을 측정함으로써 명확하게 구별될 수 있으며, 이러한 측정의 정확도는 최적의 억제제 농도 및 억제제 주입 전략에 크게 의존한다는 것을 보여준다. 이 표준화 된 프로토콜은 암 면역 요법을 모니터링하고 연구하는 T 세포 적합성의 표준으로 미토콘드리아 호흡을 구현하는 데 도움이됩니다.
정확한 T 세포 발달 및 기능은 면역계가 항원을 인식하고 반응하는 능력에 필수적입니다. 미토콘드리아 산화적 인산화(OxPhos)는 T 세포의 상태에 따라 변화한다. Naïve T 세포는 주로 OxPhos를 사용하여 ATP를 생산하는 반면, 활성화 된 T 세포는 글리코 분해가 지배적이되는 대사 전이를 겪습니다1. 이펙터 단계 후에, 기억 T 세포의 작은 잔여 서브세트는 OxPhos2,3에 의해 지배되는 대사 상태로 되돌아간다. OxPhos의 변화는 T 세포의 서브세트조차도 그들의 특이적인 OxPhos 특성1에 의해 분화될 수 있는 정도까지 T 세포의 분화를 따른다. 반대로, OxPos는 T 세포의 기능에 중요하며, OxPhos의 억제는 T 세포의 증식 및 사이토카인 생산을 차단하는 것으로 입증되었습니다4. 따라서, T 세포 OxPhos의 특성을 정확하고 재현 가능한 방식으로 정량화하는 능력은 T 세포로 작업하는 모든 사람들에게 강력한 도구입니다.
이 프로토콜에서, T 세포 OxPhos의 특성은 세포외 플럭스 분석기를 사용하여 측정된다. 이 분석기의 핵심 기능은 분석하고자 하는 세포의 성장 배지의 산소 함량을 지속적으로 측정하는 것이다. 성장 배지로부터 제거된 산소는 세포에 의해 흡수되는 것으로 가정된다. 세포를 다양한 OxPhos 억제제 또는 개질제로 처리함으로써, 산소 흡수의 감소는 억제되거나 변조된 기능과 관련된다. 예를 들어, ATP 신타제의 억제는 산화적 인산화에 의해 ATP를 생산하는데 달리 사용될 산소의 감소된 세포 흡수를 야기할 것이다. Clark 전극 및 Oroboros 장비를 포함한 다른 장비는 유사한 기능을 제공하며 각 장비마다 다른 장점과 단점이 있습니다. 이러한 장치의 연구에 다양한 세포 유형을 사용할 수 있지만, 특히 도전적인 세포 유형 중 하나는 인간 원발성 T 림프구5입니다. 그들의 작은 크기, 열악한 생존 ex 생체 및 비-부착성 특성으로 인해, 인간 일차 T 세포는 연구하기가 어려울 수 있다.
이것은 세포외 분석기에 의한 인간 일차 T 세포의 미토콘드리아 호흡을 연구하기 위한 프로토콜이다. 프로토콜은 최적화 실행으로 나뉘며, 웰 당 세포 수의 최적 농도와 올리고 마이신 및 FCCP의 최적 농도가 결정됩니다. 또한 최적화된 조건이 사용되는 Assay가 실행됩니다.
혈액 유래 인간 PBMCs 및 생체외 일차 T 세포 배양물을 사용하여, 이 프로토콜은 민감한 세포 유형으로 작업할 때 미토콘드리아 억제제의 순차적 주사 대신에 별도의 사용의 최적 저해제 농도와 관련성의 중요성을 입증한다. 마지막으로, 이 검정이 사이토카인 IL-2 및 IL-15와의 분극시 미토콘드리아 호흡의 미묘한 차이를 견고하게 검출할 수 있음이 입증된다.
산화 인산화의 상세하고 정확한 정량화는 T 세포의 에너지 상태를 설명 할 때 없어서는 안될 도구입니다. 미토콘드리아 적합성의 상태는 T 세포 활성화 잠재력, 생존 및 분화와 직접적으로 관련될 수 있다1,5. 이러한 프로토콜을 이용하면, 산화적 인산화의 다양한 특성을 확인할 수 있다(자세한 설명은 표 4 참조). 산화 인산화의 이러한 특성?…
The authors have nothing to disclose.
Kasper Mølgaard와 Anne Rahbech는 Tømmermester Jørgen Holm og Hustru Elisa f. Hansens Mindelegat로부터 보조금을 받았습니다. Kasper Mølgaard또한 Børnecancerfonden으로부터 보조금을 받았습니다.
24-well tissue culture plate | Nunc | 142485 | |
Anti-CD3xCD28 beads | Gibco | 11161D | |
Antimycin A | Merck | A8674 | |
Carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone (FCCP) | Sigma-Aldrich | C2920 | |
Cell-Tak | Corning | 354240 | For coating |
Dimethyl sulfoxide (DMSO) | Sigma Aldrich | D9170 | |
Human Serum | Sigma Aldrich | H4522 | Heat inactivated at 56 °C for 30 min |
IL-15 | Peprotech | 200-02 | |
IL-2 | Peprotech | 200-15 | |
Lymphoprep | Stemcell Technologies | 07801 | |
Oligomycin | Merck | O4876 | |
PBS | Thermo Fisher | 10010023 | |
RPMI 1640 | Gibco-Thermo Fisher | 61870036 | |
Seahorse Calibrant | Agilent Technologies | 102416-100 | |
Seahorse XF 1.0 M glucose solution | Agilent Technologies | 103577-100 | |
Seahorse XF 100 mM pytuvate solution | Agilent Technologies | 103578-100 | |
Seahorse XF 200 mM glutamine solution | Agilent Technologies | 103579-100 | |
Seahorse XF RPMI medium, pH7.4 | Agilent Technologies | 103576-100 | XF RPMI media |
Seahorse XFe96 Analyser | Agilent Technologies | Flux analyzer | |
Seahorse XFe96 cell culture microplates | Agilent Technologies | 102416-100 | XF cell culture plate |
Seahorse XFe96 sensor cartridge | Agilent Technologies | 102416-100 | |
Sodium Bicarbonate concentrate 0.1 M (NaHCO3) | Sigma Aldrich | 36486 | |
Sodium Hydroxide solution 1 N (NaOH) | Sigma Aldrich | S2770-100ML | |
X-VIVO 15 | Lonza | BE02-060F | |
T cell beads magnet DynaMag-2 Magnet | Thermo Fisher | 12321D | |
Seahorse wave | Flux analyzer software |