Summary

Préparation des échantillons et quantification relative à l’aide de la méthylation réductrice des amines pour les études peptidomiques

Published: November 04, 2021
doi:

Summary

Cet article décrit une méthode de préparation d’échantillons basée sur l’inactivation thermique pour préserver les peptides endogènes en évitant la dégradation post-mortem, suivie d’une quantification relative utilisant le marquage isotopique plus LC-MS.

Abstract

La peptidomique peut être définie comme l’analyse qualitative et quantitative des peptides dans un échantillon biologique. Ses principales applications comprennent l’identification des biomarqueurs peptidiques de la maladie ou du stress environnemental, l’identification des neuropeptides, des hormones et des peptides intracellulaires bioactifs, la découverte de peptides antimicrobiens et nutraceutiques à partir d’hydrolysats de protéines, et peut être utilisé dans des études pour comprendre les processus protéolytiques. Les progrès récents dans la préparation des échantillons, les méthodes de séparation, les techniques de spectrométrie de masse et les outils informatiques liés au séquençage des protéines ont contribué à l’augmentation du nombre de peptides identifiés et des peptidomes caractérisés. Les études peptidomiques analysent fréquemment les peptides naturellement générés dans les cellules. Ici, un protocole de préparation d’échantillon basé sur l’inactivation thermique est décrit, ce qui élimine l’activité de la protéase et l’extraction dans des conditions douces, de sorte qu’il n’y a pas de clivage des liaisons peptidiques. En outre, la quantification relative des peptides à l’aide du marquage isotopique stable par méthylation réductrice des amines est également montrée. Cette méthode d’étiquetage présente certains avantages car les réactifs sont disponibles dans le commerce, peu coûteux par rapport aux autres, chimiquement stables et permettent l’analyse de jusqu’à cinq échantillons en une seule série LC-MS.

Introduction

Les sciences « omiques » sont caractérisées par l’analyse approfondie d’un ensemble de molécules, telles que l’ADN, l’ARN, les protéines, les peptides, les métabolites, etc. Ces ensembles de données générés à grande échelle (génomique, transcriptomique, protéomique, peptidomique, métabolomique, etc.) ont révolutionné la biologie et conduit à une compréhension avancée des processus biologiques1. Le terme peptidomique a commencé à être introduit au début du 20ème siècle, et certains auteurs l’ont appelé une branche de la protéomique2. Cependant, la peptidomique présente des particularités distinctes, où l’intérêt principal est d’étudier la teneur en peptides générés naturellement au cours des processus cellulaires, ainsi que la caractérisation de l’activité biologique de ces molécules3,4.

Initialement, les études sur les peptides bioactifs étaient limitées aux neuropeptides et aux peptides hormonaux par dégradation d’Edman et dosage radioimmunologique. Cependant, ces techniques ne permettent pas une analyse globale, en fonction de l’isolement de chaque peptide à des concentrations élevées, du temps de génération d’anticorps, en dehors de la possibilité de réactivité croisée5.

L’analyse peptidomique n’a été rendue possible qu’après plusieurs avancées dans la spectrométrie de masse couplée par chromatographie liquide (LC-MS) et des projets de génome qui ont fourni des pools de données complets pour les études protéomiques / peptidomics6,7. De plus, un protocole d’extraction peptidique spécifique pour les peptidomes devait être établi car les premières études qui ont analysé les neuropeptides à l’échelle mondiale dans des échantillons de cerveau ont montré que la détection était affectée par la dégradation massive des protéines, qui se produisent principalement dans ce tissu après 1 min post-mortem. La présence de ces fragments peptidiques masquait le signal neuropeptide et ne représentait pas le peptidome in vivo. Ce problème a été résolu principalement avec l’application de l’inactivation rapide par chauffage des protéases à l’aide de l’irradiation par micro-ondes, ce qui a considérablement réduit la présence de ces fragments d’artefacts et a permis non seulement l’identification de fragments de neuropeptides, mais a révélé la présence d’un ensemble de peptides de protéines cytosoliques, mitochondriales et nucléaires, différentes de degradome6,8,9.

Ces procédures méthodologiques ont permis une expansion du peptidome au-delà des neuropeptides bien connus, où des centaines de peptides intracellulaires générés principalement par l’action des protéasomes ont été identifiés dans la levure10, le poisson-zèbre11, les tissus de rongeurs12 et les cellules humaines13. Il a été largement démontré que des dizaines de ces peptides intracellulaires ont des activités biologiques et pharmacologiques14,15. En outre, ces peptides peuvent être utilisés comme biomarqueurs de la maladie et éventuellement avoir une signification clinique, comme démontré dans le liquide céphalo-rachidien chez les patients atteints d’anévrismes sacculaires intracrâniens16.

Actuellement, en plus de l’identification des séquences peptidiques, il est possible par spectrométrie de masse d’obtenir des données de quantification absolue et relative. Dans la quantification absolue, les niveaux de peptides dans un échantillon biologique sont comparés à des étalons synthétiques, tandis que dans la quantification relative, les niveaux de peptides sont comparés entre deux échantillons ou plus17. La quantification relative peut être effectuée à l’aide des approches suivantes : 1) « sans étiquette »18; 2) marquage métabolique in vivo ou 3) marquage chimique. Les deux derniers sont basés sur l’utilisation de formes isotopiques stables incorporées dans des peptides19,20. Dans l’analyse sans étiquette, les niveaux de peptides sont estimés en tenant compte de l’intensité du signal (comptage spectral) pendant le LC-MS18. Cependant, le marquage isotopique peut obtenir des niveaux relatifs plus précis de peptides.

De nombreuses études peptidomiques ont utilisé des réactifs de marquage du butyrate de triméthylammonium (TMAB) comme marquage chimique et, plus récemment, la méthylation réductrice des amines (RMA) avec des formes deutérées et non deutérées de formaldéhyde et de réactifs cyanoborohydrure de sodium ont été utilisées11,21,22. Cependant, les étiquettes TMAB ne sont pas disponibles dans le commerce et le processus de synthèse est très laborieux. D’autre part, dans le RMA, les réactifs sont disponibles dans le commerce, peu coûteux par rapport aux autres étiquettes, la procédure est simple à effectuer et les peptides marqués sont stables23,24.

L’utilisation de RMA consiste à former une base de Schiff en permettant aux peptides de réagir avec le formaldéhyde, suivie d’une réaction de réduction à travers le cyanoborohydrure. Cette réaction provoque la diméthylation des groupes aminés libres sur les chaînes latérales N-terminales et lysine et les monométhylates N-terminaux prolines. Comme les résidus de proline sont souvent rares sur le N-terminal, pratiquement tous les peptides avec des amines libres sur le N-terminus sont marqués avec deux groupes méthyle23,24,25.

Protocol

La procédure suivante pour l’extraction peptidique et la méthylation réductrice a été adaptée des procédures précédemment publiées24,25,26,27. Ce protocole suivait les directives du Conseil national pour le contrôle de l’expérimentation animale (CONCEA) et a été approuvé par la Commission d’éthique pour l’utilisation animale (CEUA) de l’Institut des biosciences de l’…

Representative Results

Les résultats obtenus à partir des exécutions effectuées sur le spectromètre de masse sont stockés dans des fichiers de données brutes qui peuvent être ouverts dans le logiciel du spectromètre de masse. Dans les spectres MS, il est possible d’observer des groupes de pics représentant des peptides marqués selon le schéma de marquage utilisé, allant de 2 à 5 étiquettes. Par exemple, dans la figure 2, des paires de pics détectés dans un temps chromatographique sont représent…

Discussion

Dans la plupart des études peptidomiques, l’une des étapes critiques est, sans aucun doute, la préparation de l’échantillon qui doit être soigneusement effectuée pour éviter la présence de fragments peptidiques générés par les protéases après quelques minutes post-mortem. Les premières études sur les extraits cérébraux préparés à partir d’échantillons non micro-ondes ont montré la présence d’un grand nombre de fragments de protéines dans les microfiltrats de 10 kDa. Différentes approches …

Declarações

The authors have nothing to disclose.

Acknowledgements

Le développement et l’utilisation des techniques décrites ici ont été soutenus par la subvention du Conseil national brésilien de la recherche 420811/2018-4 (LMC); Fundação de Amparo à Pesquisa do Estado de São Paulo (www.fapesp.br) subventions 2019/16023-6 (LMC), 2019/17433-3 (LOF) et 21/01286-1 (MEME). Les bailleurs de fonds n’ont joué aucun rôle dans la conception de l’étude, la collecte et l’analyse des données, la décision de publier ou la préparation de l’article.

Materials

10 kDa cut-off filters Merck Millipore UFC801024 Amicon Ultra-4, PLGC Ultracel-PL Membrane, 10 kDa
Acetone Sigma-Aldrich 179124
Acetonitrile Sigma-Aldrich 1000291000
Ammonium bicarbonate Sigma-Aldrich 11213
analytical column (EASY-Column) EASY-Column (SC200)  10 cm, ID75 µm, 3 µm, C18-A2
Ethyl 3-aminobenzoate methanesulfonate Sigma-Aldrich E10521 MS-222
Fluorescamine Sigma-Aldrich F9015
Formaldehyde solution Sigma-Aldrich 252549
Formaldehyde-13C, d2, solution Sigma-Aldrich 596388
Formaldehyde-d2 solution Sigma-Aldrich 492620
Formic acid Sigma-Aldrich 33015
Fume hood Quimis Q216
Hydrochloric acid – HCl Sigma-Aldrich 258148
LoBind-Protein retention tubes Eppendorf EP0030108116-100EA
LTQ-Orbitrap Velos Thermo Fisher Scientific LTQ Velos
Microwave oven Panasonic NN-ST67HSRU
n Easy-nLC II nanoHPLC Thermo Fisher Scientific LC140
PEAKS Studio Bioinformatics Solutions Inc. VERSION 8.5
Phosphate-buffered saline Invitrogen 3002 tablets
precolumn (EASY-Column) Thermo Fisher Scientific (SC001) 2 cm, ID100 µm, 5 µm, C18-A1
Refrigerated centrifuge Hermle Z326K for conical tubes
Refrigerated centrifuge Vision VS15000CFNII for microtubes
Reversed-phase cleanup columns   (Oasis HLB 1 cc Cartridge) Waters 186000383 Oasis HLB 1 cc Cartridge
Sodium cyanoborodeuteride – NaBD3CN Sigma-Aldrich 190020
Sodium cyanoborohydride – NaBH3CN Sigma-Aldrich 156159
Sodium phosphate dibasic Sigma-Aldrich S9763 NOTE: 0.2 M PB= 0.1 M phosphate buffer pH 6.8 (26.85 mL of Na2HPO3 1M) plus 0.1 M phosphate buffer pH 6.8 (23.15 mL of NaH2PO3 1M) to 250 ml of water
Sodium phosphate monobasic Sigma-Aldrich S3139
Sonicator Qsonica Q55-110
Standard peptide Proteimax amino acid sequence: LTLRTKL
Triethylammonium buffer – TEAB 1 M Sigma-Aldrich T7408
Trifluoroacetic acid – TFA Sigma-Aldrich T6508
Ultra purified water Milli-Q Direct-Q 3UV
Vacuum centrifuge GeneVac MiVac DNA concentrator
Water bath Cientec 266
Xcalibur Software ThermoFisher Scientific OPTON-30965

Referências

  1. Kandpal, R., Saviola, B., Felton, J. The era of ‘omics unlimited. Biotechniques. 46 (5), 354-355 (2009).
  2. Farrokhi, N., Whitelegge, J. P., Brusslan, J. A. Plant peptides and peptidomics. Plant Biotechnology Journal. 6 (2), 105-134 (2008).
  3. Schulz-Knappe, P., Schrader, M., Zucht, H. D. The peptidomics concept. Combinatorial Chemistry & High Throughput Screening. 8 (8), 697-704 (2005).
  4. Dallas, D. C., et al. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 15 (5-6), 1026-1038 (2015).
  5. Chard, T. An introduction to radioimmunoassay and related techniques (3rd Ed). FEBS Letters. 238 (1), 223 (1988).
  6. Svensson, M., Sköld, K., Svenningsson, P., Andren, P. E. Peptidomics-based discovery of novel neuropeptides. Journal of Proteome Research. 2 (2), 213-219 (2003).
  7. Baggerman, G., et al. Peptidomics. Journal of Chromatography B. 803, 3-16 (2004).
  8. Theodorsson, E., Stenfors, C., Mathe, A. A. Microwave irradiation increases recovery of neuropeptides from brain tissues. Peptides. 11, 1191-1197 (1990).
  9. Che, F. Y., Lim, J., Pan, H., Biswas, R., Fricker, L. D. Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Molecular & Cellular Proteomics. 4, 1391-1405 (2005).
  10. Dasgupta, S., et al. Analysis of the yeast peptidome and comparison with the human peptidome. PLoS One. 11 (9), 0163312 (2016).
  11. Teixeira, C. M. M., Correa, C. N., Iwai, L. K., Ferro, E. S., Castro, L. M. Characterization of Intracellular Peptides from Zebrafish (Danio rerio) Brain. Zebrafish. 16 (3), 240-251 (2019).
  12. Fricker, L. D. Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Molecular BioSystems. 6 (8), 1355-1365 (2010).
  13. Gelman, J. S., Sironi, J., Castro, L. M., Ferro, E. S., Fricker, L. D. Peptidomic analysis of human cell lines. Journal of Proteome Research. 10 (4), 1583-1592 (2011).
  14. De Araujo, C. B., et al. Intracellular peptides in cell biology and pharmacology. Biomolecules. 9, 150 (2019).
  15. Gewehr, M. C. F., Silverio, R., Rosa-Neto, J. C., Lira, F. S., Reckziegel, P., Ferro, E. S. Peptides from natural or rationally designed sources can be used in overweight, obesity, and type 2 diabetes therapies. Molecules. 25 (5), 1093 (2020).
  16. Sakaya, G. R., et al. Peptidomic profiling of cerebrospinal fluid from patients with intracranial saccular aneurysms. Journal of Proteomics. 240 (3), 104188 (2021).
  17. Fricker, L. Quantitative peptidomics: General considerations. Methods in Molecular Biology. 1719, 121-140 (2018).
  18. Southey, B. R., et al. Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Analytical Chemistry. 86 (1), 443-452 (2014).
  19. Chen, X., Wei, S., Ji, Y., Guo, X., Yang, F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics. 15 (18), 3175-3192 (2015).
  20. Boonen, K., et al. Quantitative peptidomics with isotopic and isobaric tags. Methods in Molecular Biology. 1719, 141-159 (2018).
  21. Gewehr, M. C. F., et al. The relevance of thimet oligopeptidase in the regulation of energy metabolism and diet-induced obesity. Biomolecules. 10 (2), 321 (2020).
  22. Fiametti, L. O., Correa, C. N., Castro, L. M. Peptide profile of zebrafish brain in a 6-OHDA-induced Parkinson model. Zebrafish. 18 (1), 55-65 (2021).
  23. Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A. J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols. 4 (4), 484-494 (2009).
  24. Dasgupta, S., Castro, L. M., Tashima, A. K., Fricker, L. Quantitative peptidomics using reductive methylation of amines. Methods in Molecular Biology. 1719, 161-174 (2018).
  25. Tashima, A. K., Fricker, L. D. Quantitative peptidomics with five-plex reductive methylation labels. Journal of the American Society for Mass Spectrometry. 29 (5), 866-878 (2018).
  26. Che, F. Y., et al. Optimization of neuropeptide extraction from the mouse hypothalamus. Journal of Proteome Research. 6 (12), 4667-4676 (2007).
  27. Lyons, P. J., Fricker, L. D. Peptidomic approaches to study proteolytic activity. Current Protocols in Protein Science. , 13 (2011).
  28. Udenfriend, S., et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 178 (4063), 871-872 (1972).
  29. Ma, B., et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 17 (20), 2337-2342 (2003).
  30. Zhang, J., et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & Cellular Proteomics. 11 (4), 1-8 (2012).
  31. Sturm, R. M., Dowell, J. A., Li, L. Rat brain neuropeptidomics: tissue collection, protease inhibition, neuropeptide extraction, and mass spectrometric analysis. Methods in Molecular Biology. 615, 217-226 (2010).
  32. Fricker, L. D. Limitations of mass spectrometry-based peptidomic approaches. Journal of the American Society for Mass Spectrometry. 26 (12), 1981-1991 (2015).
  33. Ross, , et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics. 3, 1154-1169 (2004).
  34. Thompson, A., et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry. 75, 1895-1904 (2003).

Play Video

Citar este artigo
Correa, C. N., Fiametti, L. O., Mazzi Esquinca, M. E., Castro, L. M. d. Sample Preparation and Relative Quantitation using Reductive Methylation of Amines for Peptidomics Studies. J. Vis. Exp. (177), e62971, doi:10.3791/62971 (2021).

View Video