Summary

使用多重 原位 杂交检测小鼠迷走神经传入神经元中G蛋白偶联受体表达

Published: September 20, 2021
doi:

Summary

采用多重 原位 杂交(ISH)来同时可视化成年小鼠整个迷走神经节复合物中两个G蛋白偶联受体和一个转录因子的转录物。该协议可用于生成迷走神经传入神经元转录谱的准确图谱。

Abstract

本研究描述了小鼠颈静脉结节多重 原位 杂交(ISH)的方案,特别强调检测G蛋白偶联受体(GPCRs)的表达。使用RNAscope技术处理福尔马林固定的颈静脉结节,以同时检测两个代表性GPCR(胆囊收缩素和ghrelin受体)的表达,并结合一个标记基因的结节(成对的同源盒2b,Phox2b)或颈静脉传入神经元(PR结构域锌指蛋白12,Prdm12)。使用共聚焦显微镜对标记的神经节进行成像,以确定上述转录本的分布和表达模式。简而言之,发现Phox2b传入神经元大量表达胆囊收缩素受体(Cck1r),但不是ghrelin受体(Ghsr)。还发现了Prdm12传入神经元的一小部分来表达Ghsr和/或Cck1r.讨论了多重ISH的设计,处理和解释中潜在的技术警告。本文中描述的方法可能有助于科学家生成迷走神经传入神经元转录谱的准确图谱。

Introduction

迷走神经传入者的细胞体包含在颈静脉,岩质和结节1,2,3中。它们的轴突通过迷走神经的几个分支一起传播到颅颈,胸部和腹部区域4,5,6,7。从它们的内脏末端,迷走神经传入物可以对广泛的生理和有害刺激做出反应8,9,10。然而,参与迷走神经传感的信号分子和受体的分布仍然很差。这部分是因为迷走神经节尽管体积小,但表达的受体范围很广,包括大量的GPCR8,11,12,13。此外,迷走神经传入神经元本质上是异质的,并且显示出不同的分子谱14。更复杂的是,颈静脉、岩神经节和结节附着在小鼠体内,从而形成单个神经节肿块。最后,在动物亚群中,结节连接到交感神经节上颈神经节15

过去,研究人员已经转向免疫组织化学来研究迷走神经传入神经元的神经化学组成16,17,18。虽然使用经过验证的抗体进行免疫组化是有用的,但必须谨慎解释免疫组化研究的结果。例如,许多鉴定GPCR特异性抗体的努力都失败了19,20,21,22,23,24,25,导致研究人员得出结论,大多数针对GPCR的抗体是不可靠的。为了规避这些问题,定量PCR(qPCR)已被广泛用于评估啮齿动物迷走神经节质量26,27,28,29中的基因表达。然而,使用qPCR检查基因表达是以空间信息丢失为代价的。特别是,无法预测有多少细胞或什么细胞类型表达特定的目的基因(例如,结节细胞与颈细胞)。反复出现的问题还包括邻近组织的污染以及在解剖过程中包括可变长度的迷走神经,颈部上部和颈神经节15。由于上述困难,围绕迷走神经传入神经元中几种GPCR的表达和分布存在争议。一个特别令人费解的例子与ghrelin受体(Ghsr)有关。虽然一些研究发现这种受体在迷走神经传入神经元30,31,32中广泛表达,但其他人发现Ghsr mRNA在结节11,14中几乎检测不到。因此,有必要在迷走神经节质量中详细绘制Ghsr mRNA。

原位杂交(ISH)也被用于评估迷走神经节质量7、11、12、33、34、35的基因表达模式。因为在大多数情况下,基于RNA的技术仍然比基于抗体的技术更可靠和特异性36,37,ISH的研究已被证明对更好地理解迷走神经传入神经元的神经化学编码是有价值的。尽管如此,传统的ISH技术本身并非没有警告。放射性ISH是敏感的,但会产生背景,并且仍然很麻烦38。非放射性ISH不那么复杂,但也不那么敏感38。相比之下,最近开发的RNAscope ISH方法具有高度灵敏度,并且产生最小的背景39。目前的研究将多重荧光RNAscope应用于检测小鼠迷走神经传入神经元中的GPCR。我们专注于绘制Ghsr的分布图,并将其分布与胆囊收缩素受体(Cck1r)的分布进行比较,胆囊收缩素受体(Cck1r)是另一种已知在结节34中表达的GPCR。最后,将两种转录因子,成对的同源盒2b(Phox2b)和PR结构域锌指蛋白12(Prdm12)分别用作结节和颈静脉传入神经元的选择性标记物14。如果不可视化Phox2b或Prdm12,则很难确定地识别颈静脉传入物与结核传入物。本文还讨论了潜在的技术陷阱。

Protocol

注意:本研究中使用的小鼠是纯C57BL / 6J背景上的野生型雄性。总共使用4只小鼠进行多重ISH。所有小鼠在牺牲时大约8周大。一只雄性小鼠(约一岁)也用于证明与衰老相关的内源性荧光。动物被关在屏障设施内的通风笼子里 ,可以随意 获取食物和水。UT西南医学中心机构动物护理和使用委员会审查并批准了下述程序。有关试剂和工具的详细信息,请参见 材料表。 <p class="jov…

Representative Results

虽然RNAScope可以应用于任何年龄,性别或遗传背景的动物,但建议与年轻人(<3个月大)一起工作。这是因为荧光伪影(例如,脂褐素)是老年动物神经元中的常见发现41。来自老年小鼠的福尔马林固定神经节通常含有令人惊讶的强烈内源性荧光,很容易被误认为是真正的染色(图1A,B)。在任何情况下,建议在处理之前验证组织中内源性荧光?…

Discussion

ISH的技术是在20世纪60年代后期发明的42。然而,直到20世纪80年代中期,它才被应用于中枢和周围神经系统中mRNA的检测43,44。考虑到神经系统的异质性和抗体反复出现的问题,在细胞水平上定位特定的转录本仍然是一个非常宝贵的工具。尽管如此,传统的ISH方法仍然费力且异常敏感。幸运的是,这项研究采用了一种称为RNAscope的高灵敏…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了神经解剖学/组织学/脑注射核心的支持,由NIH资助#5P01DK119130-02资助。作者要感谢UT西南活细胞成像设施(由Phelps博士领导)及其工作人员(Abhijit Bugde和Marcel Mettlen)的帮助,部分由NIH Grant #1S10OD021684-01支持,这是Harold C. Simmons癌症中心的共享资源,部分由NCI癌症中心支持资助, P30 CA142543.

Materials

10x PBS Fisher Scientific BP399-4
20x SSC Invitrogen AM9763
-80°C freezer PHCBI MDF-DU901VHA-PA
Adobe Photoshop 2021 Adobe photo and design software
Baking oven Thermo Scientific Model:658
Confocal microscope Zeiss LSM880 Airyscan
Cover glass Brain Research Laboratories 2460-1.5D
Cryostat Leica CM 3050 S
Dumont #5 Forceps F.S.T. 11252-20
Ecomount Biocare Medical EM 897L mounting medium
HybEZ oven hybridization oven
Hydrophobic pen Vector Laboratories H-4000
ImageJ-Fiji NIH
Large scissors Henry Schein 100-7561
Micro centrifuge tubes VWR 20170-333
Minipump variable flow Fisher Scientific 13-876-1
Opal 520 Akoya biosciences FP1 1487001KT Fluorescent biomarker
Opal 570 Akoya biosciences FP1 1488001KT Fluorescent biomarker
Opal 690 Akoya biosciences FP1 1497001KT Fluorescent biomarker
ProLong Gold Antifade Mountant mounting medium for fluorescently labeled cells
RNAscope Multiplex Fluorescent Reagent Kit v2 ACD /Bio-Techne 323100 multiplex kit
RNAscope probe Mouse Cck1r-C3 ACD /Bio-Techne 313751-C3
RNAscope probe Mouse DapB ACD /Bio-Techne 310043
RNAscope probe Mouse Ghsr ACD /Bio-Techne 426141
RNAscope probe Mouse Phox2b-C2 ACD /Bio-Techne 407861-C2
RNAscope probe Mouse Prdm12-C2 ACD /Bio-Techne 524371-C2
RnaseZap Sigma R2020 Rnase decontaminating solution
Small dissecting scissors Millipore Sigma Z265977
Superfrost Plus slides Fisherbrand 1255015
Tissue Tek OCT medium Sakura 4583
User manual ACD 323100 USM
Vannas Spring Scissors Roboz RS 5620
ZEN Imaging Software Zeiss

Referências

  1. Berthoud, H. R., Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience. 85 (1-3), 1-17 (2000).
  2. Kim, S. H., et al. Mapping of sensory nerve subsets within the vagal ganglia and the brainstem using reporter mice for Pirt, TRPV1, 5-HT3, and Tac1 expression. eNeuro. 7 (2), (2020).
  3. Atsumi, K., et al. Sensory neurons in the human jugular ganglion. Tissue and Cell. 64, 101344 (2020).
  4. Mazzone, S. B., Undem, B. J. Vagal afferent innervation of the airways in health and disease. Physiological Reviews. 96 (3), 975-1024 (2016).
  5. Wang, F. B., Powley, T. L. Topographic inventories of vagal afferents in gastrointestinal muscle. Journal of Comparative Neurology. 421 (3), 302-324 (2000).
  6. Prechtl, J. C., Powley, T. L. The fiber composition of the abdominal vagus of the rat. Anatomy and Embryology. 181 (2), 101-115 (1990).
  7. Gautron, L., et al. Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions. Journal of Comparative Neurology. 518 (1), 6-24 (2010).
  8. Williams, E. K., et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell. 166 (1), 209-221 (2016).
  9. Chuaychoo, B., Hunter, D. D., Myers, A. C., Kollarik, M., Undem, B. J. Allergen-induced substance P synthesis in large-diameter sensory neurons innervating the lungs. Journal of Allergy and Clinical Immunology. 116 (2), 325-331 (2005).
  10. Page, A. J., O’Donnell, T. A., Blackshaw, L. A. Opioid modulation of ferret vagal afferent mechanosensitivity. American Journal of Physiology and Gastrointestinal Liver Physiology. 294 (4), 963-970 (2008).
  11. Egerod, K. L., et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular Metabolism. 12, 62-75 (2018).
  12. Wang, J., et al. Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing. PLoS One. 12 (10), 0185985 (2017).
  13. Bai, L., et al. Genetic identification of vagal sensory neurons that control feeding. Cell. 179 (5), 1129-1143 (2019).
  14. Kupari, J., Haring, M., Agirre, E., Castelo-Branco, G., Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Cell Reports. 27 (8), 2508-2523 (2019).
  15. Bookout, A. L., Gautron, L. Characterization of a cell bridge variant connecting the nodose and superior cervical ganglia in the mouse: Prevalence, anatomical features, and practical implications. Journal of Comparative Neurology. 529 (1), 111-128 (2021).
  16. Gautron, L., Lee, C. E., Lee, S., Elmquist, J. K. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. Journal of Comparative Neurology. 520 (17), 3933-3948 (2012).
  17. Broberger, C., Holmberg, K., Kuhar, M. J., Hokfelt, T. Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: A putative mediator of cholecystokinin-induced satiety. Proceedings of the National Academy of Sciences of the United States of America. 96 (23), 13506-13511 (1999).
  18. Yamamoto, Y., Henrich, M., Snipes, R. L., Kummer, W. Altered production of nitric oxide and reactive oxygen species in rat nodose ganglion neurons during acute hypoxia. Brain Research. 961 (1), 1-9 (2003).
  19. Grimsey, N. L., et al. Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal. Journal of Neuroscience Methods. 171 (1), 78-86 (2008).
  20. Morozov, Y. M., et al. Antibodies to cannabinoid type 1 receptor co-react with stomatin-like protein 2 in mouse brain mitochondria. European Journal of Neuroscience. 38 (3), 2341-2348 (2013).
  21. Jelsing, J., Larsen, P. J., Vrang, N. Identification of cannabinoid type 1 receptor expressing cocaine amphetamine-regulated transcript neurons in the rat hypothalamus and brainstem using in situ hybridization and immunohistochemistry. Neurociência. 154 (2), 641-652 (2008).
  22. Jensen, B. C., Swigart, P. M., Simpson, P. C. Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn-Schmiedeberg’s Archives of Pharmacology. 379 (4), 409-412 (2009).
  23. Hamdani, N., vander Velden, J. Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology. 379 (4), 403-407 (2009).
  24. Michel, M. C., Wieland, T., Tsujimoto, G. How reliable are G-protein-coupled receptor antibodies. Naunyn-Schmiedeberg’s Archives of Pharmacology. 379 (4), 385-388 (2009).
  25. Goodman, S. L. The antibody horror show: an introductory guide for the perplexed. Nature Biotechnology. 45, 9-13 (2018).
  26. Liu, C., et al. PPARgamma in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metabolism. 19 (4), 722-730 (2014).
  27. Zeeni, N., et al. A positive change in energy balance modulates TrkB expression in the hypothalamus and nodose ganglia of rats. Brain Research. 1289, 49-55 (2009).
  28. Kentish, S. J., Frisby, C. L., Kennaway, D. J., Wittert, G. A., Page, A. J. Circadian variation in gastric vagal afferent mechanosensitivity. Journal of Neuroscience. 33 (49), 19238-19242 (2013).
  29. Peiser, C., et al. Dopamine D2 receptor mRNA expression is increased in the jugular-nodose ganglia of rats with nitrogen dioxide-induced chronic bronchitis. Neuroscience Letters. 465 (2), 143-146 (2009).
  30. Date, Y., et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 123 (4), 1120-1128 (2002).
  31. Meleine, M., et al. Ghrelin inhibits autonomic response to gastric distension in rats by acting on vagal pathway. Scientific Reports. 10 (1), 9986 (2020).
  32. Zhang, W., et al. Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system. Scientific Reports. 10 (1), 18415 (2020).
  33. Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D., Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell. 161 (3), 622-633 (2015).
  34. Broberger, C., Holmberg, K., Shi, T. J., Dockray, G., Hokfelt, T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Research. 903 (1-2), 128-140 (2001).
  35. Hondoh, A., et al. Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Research. 1319, 60-69 (2010).
  36. Hankin, R. C. In situ hybridization: principles and applications. Laboratory Medicine. 23, 764-770 (1992).
  37. Baker, M. Reproducibility crisis: Blame it on the antibodies. Nature. 521 (7552), 274-276 (2015).
  38. Dagerlind, A., Friberg, K., Bean, A. J., Hokfelt, T. Sensitive mRNA detection using unfixed tissue: combined radioactive and non-radioactive in situ hybridization histochemistry. Histochemistry. 98 (1), 39-49 (1992).
  39. Wang, F., et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. Journal of Molecular Diagnostic. 14 (1), 22-29 (2012).
  40. Norgren, R., Smith, G. P. A method for selective section of vagal afferent or efferent axons in the rat. American Journal of Physiology. 267 (4), 1136-1141 (1994).
  41. Schnell, S. A., Staines, W. A., Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. Journal of Histochemistry and Cytochemistry. 47 (6), 719-730 (1999).
  42. Pardue, M. L., Gall, J. G. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proceedings of the National Academy of Sciences of the United States of America. 64 (2), 600-604 (1969).
  43. Villar, M. J., et al. Upregulation of nitric oxide synthase and galanin message-associated peptide in hypothalamic magnocellular neurons after hypophysectomy. Immunohistochemical and in situ hybridization studies. Brain Research. 650 (2), 219-228 (1994).
  44. McAllister, L. B., Scheller, R. H., Kandel, E. R., Axel, R. In situ hybridization to study the origin and fate of identified neurons. Science. 222 (4625), 800-808 (1983).
  45. Bingham, V., et al. RNAscope in situ hybridization confirms mRNA integrity in formalin-fixed, paraffin-embedded cancer tissue samples. Oncotarget. 8 (55), 93392-93403 (2017).
  46. Kersigo, J., et al. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell and Tissue Research. 374 (2), 251-262 (2018).
  47. D’Autreaux, F., Coppola, E., Hirsch, M. R., Birchmeier, C., Brunet, J. F. Homeoprotein Phox2b commands a somatic-to-visceral switch in cranial sensory pathways. Proceedings of the National Academy of Sciences of the United States of America. 108 (50), 20018-20023 (2011).
  48. Staib-Lasarzik, I., et al. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury. Journal of Neurotrauma. 31 (19), 1664-1671 (2014).
  49. Avau, B., et al. Ghrelin is involved in the paracrine communication between neurons and glial cells. Neurogastroenterology and Motility. 25 (9), 599-608 (2013).
  50. Settell, M. L., et al. Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. Journal of Neural Engineering. 17 (2), 026022 (2020).
  51. Nyborg, N. C. B., et al. Cholecystokinin-1 receptor agonist induced pathological findings in the exocrine pancreas of non-human primates. Toxicology and Applied Pharmacology. 399, 115035 (2020).
check_url/pt/62945?article_type=t

Play Video

Citar este artigo
Bob-Manuel, J., Gautron, L. Detection of G Protein-coupled Receptor Expression in Mouse Vagal Afferent Neurons using Multiplex In Situ Hybridization. J. Vis. Exp. (175), e62945, doi:10.3791/62945 (2021).

View Video