Окисление жирных кислот β является важным метаболическим путем, ответственным за выработку энергии во многих различных типах клеток, включая гепатоциты. Здесь мы описываем метод измерения β окисления жирных кислот в свежевыделенных первичных гепатоцитах с использованием 14С-меченой пальмитиновой кислоты.
Окисление жирных кислот β является ключевым метаболическим путем для удовлетворения энергетических потребностей печени и обеспечения субстратов и кофакторов для дополнительных процессов, таких как кетогенез и глюконеогенез, которые необходимы для поддержания гомеостаза глюкозы всего тела и поддержки функции внепеченочных органов в состоянии голодания. Окисление жирных кислот β происходит в митохондриях и пероксисомах и регулируется с помощью нескольких механизмов, включая поглощение и активацию жирных кислот, уровни экспрессии ферментов и доступность кофакторов, таких как коэнзим А и NAD+. В анализах, которые измеряют β окисления жирных кислот в гомогенатах печени, лизис клеток и общее добавление супрафизиологических уровней кофакторов маскируют эффекты этих регуляторных механизмов. Кроме того, целостность органелл в гомогенатах трудно контролировать и может значительно варьироваться между препаратами. Измерение β окисления жирных кислот в интактных первичных гепатоцитах преодолевает вышеуказанные подводные камни. Этот протокол описывает метод измерения β окисления жирных кислот в суспензии свежеизолированных первичных гепатоцитов мыши, инкубированных с 14С-меченой пальмитиновой кислотой. Избегая от нескольких часов до нескольких дней культивирования, этот метод имеет преимущество в лучшем сохранении уровней экспрессии белка и активности метаболического пути исходной печени, включая активацию β окисления жирных кислот, наблюдаемого в гепатоцитах, выделенных у мышей натощак, по сравнению с кормлеными мышами.
Окисление жирных кислот β является важным процессом в липидном обмене, обеспечивая катаболический путь для балансировки синтеза и потребления жирных кислот из рациона. Этот процесс генерирует энергию для нескольких органов, включая сердечную мышцу, кору почек и печень натощак, и использует жирные кислоты, полученные из рациона, липолиза жировой ткани и внутренних запасов триглицеридов 1,2.
Окисление жирных кислот через β путь окисления приводит к последовательному укорочению жировой ациловой цепи двумя углеродами одновременно, высвобождаемыми в виде ацетил-КоА, и этот процесс происходит как в митохондриях, так и в пероксисомах. В то время как большинство жирных кислот подвергаются только β окислению, некоторые из них окисляются при различных углеродах, прежде чем войти в этот путь. Например, 3-метилзамещенные жирные кислоты, такие как фитановая кислота, подвергаются удалению одного углерода путем α-окисления в пероксисомах перед попаданием в β путь окисления. Аналогичным образом, некоторые жирные кислоты сначала превращаются в дикарбоновые жирные кислоты путем окисления концевой метильной группы (ω-окисление) в эндоплазматическом ретикулуме, прежде чем предпочтительно окисляются в пероксисомах путем β-окисления3.
Независимо от конкретной органеллы, жирная кислота должна быть сначала преобразована в тиоэстер коэнзима А (КоА), или ацил-КоА, для окисления через β путь окисления. β-окисление длинноцепочечных ацил-КоА в митохондриальном матриксе требует карнитинового челнока для их транслокации, где карнитин пальмитоилтрансфераза 1 (CPT1) катализирует превращение ацил-КоА в ацилкарнитины и является ферментом, ограничивающим скорость в этом процессе4. После перемещения в митохондриальный матрикс ацил-КоА повторно формируются и служат субстратами для митохондриального механизма β окисления. В состоянии голодания ацетил-КоА, образующийся в результате β-окисления в печеночных митохондриях, в основном направляется на кетогенез. Пероксисомы служат основным местом для β окисления очень длинноцепочечных, разветвленных и дикарбоновых жирных кислот. Пероксисомы не требуют карнитинового шаттла для импорта субстратов жирных кислот, вместо этого импортируя соответствующие ацил-КоА через активность транспортеров АТФ-связывающей кассеты (ABC) ABCD1-35. Внутри пероксисом ацил-КоА затем окисляются специальным набором ферментов, отличных от митохондриальных жирных кислот β механизма окисления. Как митохондрии, так и пероксисомы также требуют поставок NAD+ и свободного КоА для окисления жирных ацильных цепей. Было показано, что уровни CoA в печени увеличиваются в ответ на голодание, поддерживая повышенную скорость окисления жирных кислот, которое происходит в этом состоянии6. Кроме того, повышенная деградация КоА в пероксисомах приводит к селективному снижению окисления пероксисомальных жирных кислот7. Поэтому процесс окисления жирных кислот внутри клетки регулируется уровнями экспрессии и активностью ферментов, участвующих в активации, транспорте и окислении жирных кислот, а также концентрациями кофакторов и других метаболитов в нескольких субклеточных компартментах.
Процедуры с использованием тканевых гомогенатов для измерения окисления жирных кислот разрушают клеточную архитектуру, регулирующую и поддерживающую этот процесс, что приводит к сбору данных, которые не точно отражают метаболизм in vivo. В то время как методы, использующие покрытые первичные гепатоциты, сохраняют эту систему, культивирование изолированных клеток в течение длительных периодов времени приводит к потере профиля экспрессии генов in vivo, который присутствовал в клетках, когда они все еще жили в животном 8,9. Следующий протокол описывает способ выделения первичных гепатоцитов и анализа их способности к β окисления жирных кислот сразу после выделения и в суспензии с использованием [1-14С]пальмитиновой кислоты. Анализ основан на измерении радиоактивности, связанной с кислоторастворимыми метаболитами (ASM) или продуктами, такими как ацетил-КоА, полученными β окисления [1-14C]пальмитиновой кислоты10,11.
Во время перфузии печени крайне важно избегать введения пузырьков воздуха, так как они блокируют микрокапилляры в печени, предотвращая или ограничивая буферную циркуляцию и в целом снижая выход гепатоцитов и жизнеспособность20,21. Меры предосторожности, …
The authors have nothing to disclose.
Эта работа была поддержана грантом Национального института здравоохранения R35GM119528 Роберте Леонарди.
(R)-(+)-Etomoxir sodium salt | Tocris Bioscience | 4539/10 | |
[1-14C]-Palmitic acid, 50–60 mCi/mmol, 0.5 mCi/mL | American Radiolabeled Chemicals | ARC 0172A | |
1 M HEPES, sterile | Corning | 25060CI | |
10 µL disposable capillaries/pistons for positive displacement pipette | Mettler Toledo | 17008604 | |
1000 µL, 200 µL, and 10 µL pipettes and tips | |||
5 mL, 10 mL, and 25 mL serological pipettes | |||
50 mL sterile centrifuge tubes | CellTreat | 229421 | |
70% Perchloric acid | Fisher Scientific | A2296-1LB | |
BSA, fatty acid-free | Fisher Scientific | BP9704100 | |
CaCl2 dihydrate | MilliporeSigma | 223506 | |
D-(+)-Glucose | MilliporeSigma | G7021 | |
EGTA | Gold Biotechnology | E-217 | |
Ethanol | Pharmco | 111000200CSPP | |
Filter System, 0.22 μm PES Filter, 500 mL, Sterile | CellTreat | 229707 | |
Gentamicin sulphate | Gold Biotechnology | G-400-25 | |
HDPE, 6.5 mL scintillation vials | Fisher Scientific | 03-342-3 | |
Hemocytometer | |||
Hypodermic needles 22 G, 1.5 in | BD Biosciences | 305156 | |
Isoflurane | VetOne | 502017 | |
KCl | Fisher Scientific | BP366-1 | |
KH2PO4 | MilliporeSigma | P5655 | |
Liberase TM Research Grade | MilliporeSigma | 5401119001 | Defined blend of purified collagenase I and II with a medium concentration of thermolysin |
M199 medium | MilliporeSigma | M5017 | |
MgSO4 heptahydrate | MilliporeSigma | M1880 | |
Microcentrifuge | Fisher Scientific | accuSpin Micro 17 | |
Microdissecting Scissors | Roboz Surgical Instrument Co | RS-5980 | |
NaCl | Chem-Impex International | 30070 | |
NaHCO3 | Acros Organics | 424270010 | |
Palmitic acid | MilliporeSigma | P0500 | |
Penicillin/streptomycin (100x) | Gibco | 15140122 | |
Phosphate buffered saline (PBS) | Cytiva Life Sciences | SH30256.01 | |
Positive displacement pipette MR-10, 10 µL | Mettler Toledo | 17008575 | |
Refrigerated centrifuge with inserts for 50 mL conical tubes | Eppendorf | 5810 R | |
Round-bottom, 14 mL, polypropylene culture test tubes | Fisher Scientific | 14-956-9A | |
Scintillation counter | Perkin Elmer | TriCarb 4810 TR | |
ScintiVerse BD cocktail | Fisher Scientific | SX18-4 | |
Shaking water bath, 30 L capacity | New Brunswick Scientific | Model G76 | |
Sterile cell strainers, 100 µm | Fisher Scientific | 22363549 | |
Thumb Dressing Forceps | Roboz Surgical Instrument Co | RS-8120 | |
Trypan Blue | Corning | 25900CI | |
Variable-flow peristaltic pump | Fisher Scientific | 138762 | |
Water baths, 2–2.5 L capacity |