細胞の駆出や移植などの発生学的操作は、早期の発達を研究するための重要なツールです。このプロトコルは、ゼブラフィッシュ胚でこれらの操作を行う簡単で効果的な移植装置を記述する。
細胞の除去や胚の内外への細胞移植などの古典的な胚学的操作は、複雑な発達過程を研究するための強力な技術です。ゼブラフィッシュ胚は、簡単にアクセスでき、サイズが比較的大きく、透明であるため、これらの操作に理想的です。しかし、以前に開発された細胞の除去および移植のための装置は、使用するのが面倒であるか、購入するのに高価である。対照的に、ここで提示される移植装置は経済的で、組み立てやすく、使いやすい。本プロトコルでは、まず、移植装置の取り扱いならびにその組み立てについて、市販品や広く入手可能な部品から紹介する。次に、局所的な供給源からのシグナル分散を研究するための異所性クローンの生成、サイズ縮小胚を生成するための細胞の駆除、および母体ザイゴティック変異体を生成するための生殖細胞移植の3つの用途を提示する。最後に、このツールは、日本の米魚メダカなどの他の種の発生操作にも使用できることを示しています。
胚軸1の形成を指示する主催者の存在を実証したマンゴールドとスペマンの古典的な実験から、胚間の細胞移植は胚発生を研究するための確立された技術となっている2,3,4,5,6,7,8,90 .移植に一般的に使用されるセットアップは、柔軟なチューブを介してマイクロピペットホルダーに接続されたマイクロメーター駆動制御ガスタイトシリンジと鉱物油で満たされた貯水池12,13で構成されています12,13。この設定では、シリンジのプランジャーがねじを通って移動します。この方法で発生する圧力は、マイクロピペットに移され、ある胚から細胞を引き出し、別の胚に堆積させるために使用される。しかし、この油圧式装置は多くの部品から成り、最初から組み立てるのは面倒である。同様のデバイスは、通常は手動マイクロインジェクターとして販売される完全なワーキングセットとして購入することができ、これらの商用バージョンは通常1500米ドル以上の費用がかかります。自家製と市販の両方のバージョンでは、胚操作用のマイクロピペットは、油で満たされたチューブを介して圧力発生装置(気密注射器)から分離されます。したがって、マイクロピペットの操作とプランジャーの動きは、異なる手で別々に操作する必要があり、スループットと有用性を低下させます。さらに、チューブは気泡の形成を避けながら油で慎重に充填する必要があるため、移植の準備には手間がかかります。ここでは、安価で組み立てやすく、使いやすい細胞の除去および移植のための代替空気圧操作装置について説明する。
ここに示す装置はマイクロピペットのホールダーが付く25 μLのガスタイトなシリンジから成り、費用は80米ドル以下である。装置はLuerロックの付属品によってシリンジにマイクロピペットのホールダーを挿入することによって容易に組み立てられる(図1A)。その後、デバイスをマイクロマニピュレーターに直接取り付け、ユーザーはマイクロマニピュレータで直接片手で位置と吸引の両方を制御することができます。これは、ドナーおよび宿主胚を含む移植皿を安定させ、移動させるために他方の手を自由に残すのが便利である。装置は空気と直接吸引によって働き、鉱物油で満たされる必要はない。水とガラス針の壁の間の魅力的な力のために、水位がガラス針の先細り端にある限り、注射器のプランジャーの大きな動きは、針内の水位の小さな動きに変換されます。これにより、吸引細胞の数とその挿入位置を正確に制御できます。
この装置の有用性を実証するために、ゼブラフィッシュ(Danio rerio)胚に3つの応用を提示する。まず、分泌されたシグナル伝達分子の局所的な発生源を生成する方法を示し、この分子を用いて、勾配形成の研究に使用できる2,4,6を示す。ここで、ドナー胚は、蛍光標識されたシグナル伝達分子をコードするmRNAを注入する。蛍光標識ドナー細胞は、次いで野生型宿主胚に移植され、シグナル勾配の形成を画像化して分析することができる。次に、この装置を使用して、サイズ縮小胚5,13を生成するために駆除によって細胞を除去する方法を説明する。最後に、胚芽がアブラジレートされた宿主胚に原始胚細胞レポーターを運ぶ細胞を移植することによって、母体-接合体突然変異体を強固に産生する方法を示す。将来的には、ここで説明する移植装置は、細胞の除去または移植を必要とする他の胚学的操作に容易に適応することができる。
移植実験の成功は、実験者の細かい運動能力に強く依存しています。手続きを正常に行うためには、練習が必要です。しかし、ここで紹介する器械は市場の他の人と比較して学び、使用することは比較的容易であり、そして、一般的に、練習の数日しか必要とされる。
移植手順の成功は、いくつかの予防措置を取ることによって強化することができます。1つのステップは、マイクロマニピュレータが良質で、円滑な操作が可能であることを保証することです。立体顕微鏡に高い倍率を持つ眼を加えることは、胚に対して正確に針を配置するのに役立ちます。よく繁殖するゼブラフィッシュやメダカを使用して健康な胚を獲得し、取り扱い中(特にデコールリオネーションステップ中および後)に胚に損傷を与えないことに注意を払って、成功率も向上します。
遅延毒性の問題は、トラブルシューティングが難しくなることがあります。胚が数時間後に死んだが、移植直後ではない場合、黄身は針によって損傷を受けた(例えば、胚に深く入り込むなど)か、細胞があまりにも強引に放出された可能性がある。遅延毒性と胚死はまた、ドナー細胞と一緒に注入された黄身または細胞の破片から生じる可能性があります。別の原因は、リンガーの溶液中のHEPESバッファーを劣化させることがある。これらの問題は、細胞を洗浄することによって(ステップ1.3.8を参照)、または単にバッファーの新鮮なバッチを使用することによって、それぞれ克服することができます。さらに、生殖細胞移植実験における奇形宿胚は、過剰に高いモルフォリノ濃度から生じる可能性がある。宿主の野生型生殖細胞を完全にアブライズし、それによってこれらの細胞が子孫に寄与するのを防ぐのに十分なモルフォリノを使用することが重要であるが、同時に、過度に高いモルフォリノール濃度を避ける必要がある。したがって、注射されたすべての宿主胚(典型的な実験では数百個)にわたる一貫したモルフォリノ量が生殖細胞系列移植の成功の鍵となる。これは、すべての胚が同じ注入量を受け取ることを確実にするために蛍光体型顕微鏡で追跡することができる容易に目に見えるトレーサーdye14でモルフォリノ注入ミックスを補うことによって助けることができる。
このプロトコルで説明されている手順は、ブラスタステージゼブラフィッシュまたはメダカ胚の細胞の操作のみを含むが、将来的には、移植針の直径と形状を変更することによって、異なる段階や種にデバイスを適応させることができる可能性が高い。
The authors have nothing to disclose.
このプロジェクトはマックスプランク協会の支援を受け、欧州連合(EU)のHorizon 2020研究・イノベーションプログラム(補助金契約第637840(QUANTPATTERN)および863952第1 863952(ACE-OF-SPACE))の下で欧州研究評議会(ERC)から資金を受け取りました。
1.0 mm glass capillary, ends cut without filament | To make the transplantation needle | ||
200 mL glass beaker | For embryo dechorionation | ||
24-well plastic plate | To be coated with agarose in order to incubate embryos | ||
5 cm diameter glass Petri dish | For embryo dechorionation | ||
6-well plastic plate | To be coated with agarose in order to incubate embryos | ||
Agarose | To coat plastic dishes | ||
Dnd1 morpholino | Gene Tools | Sequence: GCTGGGCATCCATGTCTCCGAC CAT |
|
Embryo medium | 250 mg/L Instant Ocean salt, 1 mg/L methylene blue in reverse osmosis water adjusted to pH 7 with NaHCO3 | ||
Fluorescence stereomicroscope with GFP/RFP filters and light source | To assess YSL injections and germ-line transplantations | ||
Glass micropipette puller | Sutter Instrument Company | P-1000 | To make the transplantation needle |
Glass pasteur pipette | Kimble Chase (via Fisher) | 63A53WT | For pipetting embryos; the tips can be flamed to smoothen out the edge |
Incubator at 28 °C | For incubating zebrafish embryos | ||
Luer tip 25 μL Hamilton syringe, 1700 series | Hamilton | Ref: 80201 | Part of the transplantation device |
Manual micromanipulator with 3 axes of movement | Narishige | M-152 | For controlling the transplantation device |
Manual pipetting pump | Bio-Tek | Cat. # 641 | For use with the glass pipettes to transfer embryos |
Metal dissecting probe | For moving and rotating zebrafish embryos | ||
Microforge | Narishige | MF2 | To make the transplantation needle |
Microinjection apparatus | For injection of mRNA and morpholino into embryos | ||
Microinjection molds, triangular grooves | Adaptive Science Tools | TU-1 | To prepare microinjection plates with agarose |
Microinjection-molds, single wells | Adaptive Science Tools | PT-1 | To prepare transplantation plates with agarose |
Micropipette holder with Luer fitting for a 1.0 mm glass capillary | World Precision Instruments | MPH6S10 | Part of the transplantation device |
mMessage mMachine Sp6 transcription kit |
Life Technologies | AM1340M | To generate capped mRNA for injection into embryos |
Plasmid with GFP-nos1 3'UTR | Plasmid that can be transcriped to produce mRNA encoding GFP with the 3'UTR of nos1 | ||
Plastic petri dish 100 mm | To be coated with agarose in order to make injection and transplantation dishes | ||
Protease from Streptomyces griseus | Sigma | P5147 | For embryo dechorionation: Make a 5 mg/ml stock and use at 1 mg/ml to dechorionate embryos |
Ringer’s solution | For 1 L: Add 6.78 g of NaCl, 0.22 g of KCl, 0.26 g of CaCl2 and 1.19 g of HEPES; then fill to 1 L; adjust pH to 7.2; sterilize by filtration | ||
Stereomicroscope | For injection and transplantation |