Neste manuscrito, descrevemos um método simples de crescimento, purificação e titulação do vírus herpes simplex oncolítico para uso pré-clínico.
Os vírus oncolíticos (OVs), como o vírus herpes simplex oncolítico (oHSV), são uma estratégia de tratamento em rápido crescimento no campo da imunoterapia contra o câncer. Os OVs, incluindo oHSV, replicam-se seletivamente e matam células cancerígenas (poupando células saudáveis/normais) ao induzir a imunidade anti-tumor. Devido a essas propriedades únicas, as estratégias de tratamento baseadas em oHSV estão sendo cada vez mais utilizadas para o tratamento do câncer, preclinicamente e clinicamente, incluindo talimogene laherparevec aprovado pela FDA (T-Vec). Crescimento, purificação e titulação são três técnicas essenciais de laboratório para quaisquer OVs, incluindo oHSVs, antes que possam ser utilizados para estudos experimentais. Este artigo descreve um método simples passo a passo para amplificar oHSV em células Vero. À medida que os OHSVs se multiplicam, eles produzem um efeito citopático (CPE) nas células Vero. Uma vez que 90-100% das células infectadas apresentam um CPE, elas são colhidas suavemente, tratadas com cloreto de benzonase e magnésio (TMN2),filtradas e submetidas à purificação usando o método de suênula-gradiente. Após a purificação, o número de oHSV infecciosos (designados como unidades formadoras de placas ou PFUs) é determinado por um “ensaio de placa” em células Vero. O protocolo aqui descrito pode ser usado para preparar estoque de oHSV de alta titulação para estudos in vitro na cultura celular e experimentos in vivo em animais.
Os vírus oncolíticos (OVs) são uma forma emergente e única de imunoterapia contra o câncer. Os OVs replicam-se seletivamente em células tumorais e lises (poupando células normais/saudáveis)1 ao induzir imunidade anti-tumor2. O vírus herpes simplex oncolítico (oHSV) é um dos vírus mais estudados entre todos os OVs. É mais distante na clínica, com Talimogene laherparepvec (T-VEC) sendo o primeiro e único OV a receber aprovação da FDA nos EUA para o tratamento de melanoma avançado3. Além do T-VEC, muitos outros oHSVs geneticamente modificados estão sendo testados pré-clínico e clinicamente em diferentes tipos de câncer3,4,5,6,7,8. A atual biotecnologia avançada de DNA recombinante aumentou ainda mais a viabilidade da engenharia de novos oHSVs codificação para transgenes terapêuticos3,5. Um sistema eficiente de propagação, purificação e determinação de oHSV é fundamental antes que qualquer oHSV (recém-desenvolvido) possa ser testado para estudos in vitro e in vivo. Este artigo descreve um método simples passo-a-passo de crescimento oHSV (em células Vero), purificação (pelo método de gradiente de sacarose) e titulação (por um ensaio de placa oHSV em células Vero)(Figura 1). Pode ser facilmente adotado em qualquer configuração de laboratório de Nível 2 (BSL2) de Biossegurança para obter um estoque viral de alta qualidade para estudos pré-clínicos.
Vero, uma linha de células renais de macaco verde africano, é a linha celular mais usada para propagação oHSV9,10,11,12,13 como as células Vero têm uma via de sinalização antiviral defeituosa14. Outras linhas celulares com estimulador inativado de sinais de genes interferon (STING) também podem ser usadas para o crescimento oHSV12,13. Este protocolo utiliza células Vero para o crescimento e ensaio de placas oHSV. Após a propagação, as células infectadas pelo OHSV são colhidas, lised e submetidas à purificação, onde as células lised são tratadas pela primeira vez com nuclease de benzonase para degradar o DNA das células hospedeiras, prevenir a agregação nucleico ácido-proteína e reduzir a viscosidade do lisato celular. Como a ativação adequada da benzonase muitas vezes requer Mg2+, 1-2 mM MgCl2 é usado neste protocolo15. Os detritos de células hospedeiras do lysato celular tratado com benzonase são ainda mais eliminados pela filtragem serial antes da centrifugação de sáuera-gradiente de alta velocidade. Uma almofada viscosa de solução de sacarose de 25% ajuda a garantir uma taxa mais lenta de migração de vírus através da camada de sacarose, deixando componentes relacionados com células hospedeiras no sobrenante, melhorando assim a purificação e limitando a perda de vírus na pelota16. O oHSV purificado é então titulado em células Vero, e placas virais são visualizadas por giemsa manchando17 ou X-gal staining (para LacZ codificando oHSVs)18.
O protocolo começa com o crescimento do oHSV em células Vero de baixa passagem. A confluência da monocamada celular Vero deve ser ~80% no momento da inoculação do vírus, pois as células supercultivadas podem desenvolver estruturas fibrosas apertadas que podem reduzir a entrada de OHSV nas células Vero20. Uma vez observadas 90-100% CPE, a cultura sobrenante é removida, as células são colhidas, resuspended em VB/supernante (ver passo 1.4.6), congelado por snap e armazenado a -80 °C para …
The authors have nothing to disclose.
A pesquisa no laboratório Saha foi apoiada em parte por fundos do DOD (W81XWH-20-1-0702) e da Fundação Dodge Jones-Abilene. Samuel D. Rabkin e Melissa R.M. Humphrey foram parcialmente apoiados pelo NIH (R01 CA160762).
1.7 mL centrifuge tubes | Sigma | CLS3620 | |
15 mL polypropylene centrifuge tubes | Falcon | 352097 | |
5 mL polypropylene tubes | Falcon | 352063 | |
50 mL polypropylene centrifuge tubes | Falcon | 352098 | |
6-well cell culture plates | Falcon | 353046 | |
Benzonase Nuclease | Sigma | E8263-25KU | |
Cell scraper | Fisher Scientific | 179693 | |
Dimethyl sulfoxide | Sigma | D2650-100ML | |
Dulbecco’s Modified Eagle Medium | Corning | MT-10-013-CV | |
Dulbecco’s Phosphate Buffered Saline | Corning | MT-21-031-CV | |
Fetal Bovine Serum | Hyclone | SH3007003 | |
Giemsa Stain | Sigma | G3032 | |
Glutaraldehyde | Fisher Scientific | 50-262-23 | |
Glycerol | Sigma | G5516 | |
Hank's Balanced Salt Solution (HBSS) | Corning | MT-21-021-CV | |
High-Glucose Dulbecco’s Phosphate-buffered Saline | Sigma | D4031 | |
Human immune globulin | Gamastan | NDC 13533-335-12 | |
Magnesium chloride | Fisher Chemical | M33-500 | |
Media Sterilization filter, 250 mL | Nalgene, Fisher Scientific | 09-740-25E | |
Media Sterilization filter, 500 mL | Nalgene, Fisher Scientific | 09-740-25C | |
Neutral Red solution | Sigma | N4638 | |
Paraformaldehyde | Fisher scientific | 15710S | |
Plate rocker | Fisher | 88861043 | |
Potassium Ferricyanide | Sigma | P8131 | |
Potassium Ferrocyanide | Sigma | P9387 | |
Sodium chloride | Fisher Chemical | S271-3 | |
Sorvall ST 16R Centrifuge | ThermoFisher Scientific | 75004381 | |
Sorvall ST 21R Centrifuge | ThermoFisher Scientific | 75002446 | |
Sterile Microcentrifuge Tubes with Screw Caps | Fisher Scientific | 02-681-371 | |
Sucrose | Fisher Scientific | BP220-1 | |
Syringe Filter, 0.45 PVDF | MilliporeSigma | SLHV033RS | |
Syringe Filter, 0.8 MCE | MilliporeSigma | SLAA033SS | |
Syringe filter, 5 µm PVDF | MilliporeSigma | SLSV025LS | |
T150 culture flask | Falcon | 355001 | |
Tris-HCl | MP Biomedicals LLC | 816116 | |
Ultrasonic water bath | Branson | CPX-952-116R | |
X-gal | Corning | 46-101-RF |