Summary

植入颅窗以在清醒小鼠 中重复体内 成像

Published: June 22, 2021
doi:

Summary

这里提出的是植入慢性颅窗的方案,用于在清醒的头部约束小鼠中对脑细胞进行纵向成像。

Abstract

为了充分了解行为动物中神经元和神经胶质细胞的细胞生理学,有必要可视化它们的形态并记录它们在行为小鼠 体内 的活动。本文描述了一种植入慢性颅窗的方法,以允许在清醒的头部抑制小鼠中对脑细胞进行纵向成像。结合遗传策略和病毒注射,可以用结构或生理标记标记特定的细胞和感兴趣的区域。该协议展示了如何结合病毒注射来标记皮层中表达GCaMP6的星形胶质细胞附近的神经元,以便通过颅窗同时对两个细胞进行成像。相同细胞的多光子成像可以在清醒的,行为正常的动物中进行数天,数周或数月。这种方法为研究人员提供了一种实时观察细胞动力学的方法,可以应用于回答神经科学中的许多问题。

Introduction

在小鼠皮层中进行体内多光子荧光显微镜检查的能力对于研究细胞信号传导和结构123456789疾病病理学1011和细胞发育1213至关重要.通过植入慢性颅窗,可以进行纵向成像,允许在活体动物中对皮质区域进行数天,数周或数月1314的重复成像。多光子显微镜是体内重复成像的理想选择,因为改进了深度探测,减少了与所用红外激光相关的光损伤。这允许研究各种皮质区域中特定细胞的分子和细胞动力学。

多光子显微镜已用于小鼠神经元和神经胶质细胞的体内成像15,1617181920可以实施各种策略来标记特定的细胞类型和感兴趣的区域。一种常见的方法是使用Cre-Lox重组系统以细胞特异性方式驱动遗传编码荧光蛋白的表达。这可以用转基因小鼠进行,例如,将tdTomato“floxed”小鼠(Ai14)与在感兴趣的启动子21下表达Cre-重组酶的小鼠杂交。或者,可以通过病毒注射实现细胞和位点特异性标记。在这里,在细胞特异性启动子下编码Cre重组酶的病毒和编码絮状目的基因的病毒被注射到定义的区域中。然后,接受两种病毒载体的适当细胞类型将表达所需的基因。这些基因可以是结构标记,如tdTomato,以查看细胞形态变化22或遗传编码钙指示剂(GECI),如GCaMP和/或RCaMP,以检查钙动力学23。遗传重组的方法可以单独或组合地用于标记一种或多种细胞类型。第三种方法,不需要转基因小鼠或病毒构建体(其具有有限的包装能力),是在24的DNA构建体的子宫电穿孔。根据电穿孔的时间,可以靶向不同的细胞类型252627

当进行多光子成像时,可以在清醒或麻醉时对小鼠进行成像。清醒小鼠的成像可以通过通过连接的头板28固定小鼠来进行。这种方法通过允许动物相对自由地移动来减轻压力,例如自由漂浮,空气支撑的聚苯乙烯泡沫塑料球29,自由漂浮的跑步机1,或空气提升的家庭笼子系统,其中小鼠被连接的头板固定并允许在开放的腔室30中移动。对于这些成像条件中的每一种,首先需要使小鼠习惯于成像设置。本文描述了使用空气提升家庭笼系统的习惯化和成像过程。

该协议描述了在皮层中植入用于纵向 体内 成像的慢性颅窗。在这里,我们将使用在星形胶质细胞中有条件表达GCaMP6f的小鼠来监测钙信号传导动力学。此外,本文描述了使用tdTomato作为神经元标签的病毒注射程序。这允许确定神经元突触结构的变化和/或作为结构标志物的可用性,从而实现对同一星形胶质细胞的重复成像。在整个实验方案中,将突出显示关键步骤,以确保从多光子显微镜获得的最佳图像质量。

Protocol

所有动物实验均按照内布拉斯加大学医学中心IACUC批准的指南进行。 1. 手术前 准备用于病毒注射的移液器。使用移液器拉动硼硅酸盐玻璃毛细管,并以20°角斜移移液器。对移液器进行灭菌过夜。 将新鲜的无菌凝胶泡沫切成小方块,准备它们。将凝胶泡沫浸入含有0.5mL盐水的无菌微量离心管中。使用前将凝胶泡沫浸泡在盐水中至少30分钟。 通过将海绵条?…

Representative Results

颅窗的质量可以通过神经元结构的清晰程度来评估。在良好的窗口中,树突状棘清晰可见(图1)。通过存储结构和位置数据,可以对同一动物进行数天,数周或数月的重复成像以检查相同的细胞(图1)。 图1 中的图像是从初级运动皮层的前肢区域(在5 mm窗口中)获得的。可以测量各种参数,包括树突棘和轴突的密度和动力学,?…

Discussion

在这里,我们提出了一种植入慢性颅窗的方案,用于在空气抬起的家庭笼子上对清醒的头部受限小鼠进行皮质星形胶质细胞和神经元的 体内 成像。已经提供了颅窗应用用于表达GECI和神经元突触结构的星形胶质细胞成像的具体示例。通过使用多光子显微镜,可以在几天内重复记录星形细胞钙信号传导动力学和结构突触动力学。

慢性颅窗提供良好的光学成像质量,并允?…

Materials

15o Pointed Blade Surgistar 6500 Surgery Tools
19 G Needles BD 305186 Surgery Supply
AAV1-CAG-FLEX-tdTomato Addgene 28306-AAV1 Viral Vector
AAV1-CaMKII-0-4-Cre Addgene 105558-AAV1 Viral Vector
Acteone Fisher Scientific A16P4 Reagent
Alcohol Prep Pads Fisher Scientific Covidien 5750 Surgery Supply
Beveler Narishige Equipment
Borosilicate Glass World Precision Instruments TW100F-4 Surgery Supply
Carbide Burs SS White Dental 14717 Surgery Tools
Carprofen (Rimadyl), 50 mg/mL Zoetis Mylan Institutional, LLC. Drug
Compressed Air Fisher Scientific 23-022-523 Surgery Supply
Cotton Tip Applicators Puritan 836-WC NO BINDER Surgery Supply
Cover Glass, No. 1 thickness, 3 mm/5 mm Warner Instruments 64-0720, 64-0700 Surgery Supply
Dental Drill Aseptico Equipment
Dexamethasone, 4 mg/mL Mylan Institutional, LLC. Drug
Dissecting Microscope Nikon Equipment
Duralay Liquid  (dental cement liquid) Patterson Dental 602-8518 Reagent
Duralay Powder  (dental cement powder) Patterson Dental 602-7932 Reagent
Enrofloxacin, 2.27% Bayer Drug
Eye Ointment Dechra 17033-211-38 Surgery Supply
Fiber Lite High Intensity Illuminator Dolan-Jenner Industries Equipment
Forceps (Large) World Precision Instruments 14099 Surgery Tools
Forceps (Small) World Precision Instruments 501764 Surgery Tools
GCaMP6f B6; 129S-Gt(ROSA)26Sortm95.1(CAGGCaMP6f)Hze/J The Jackson Laboratory Stock No: 024105 Mouse line
Germinator Fisher Scientific Equipment
GLAST-CreER Tg(Slc1a3-cre/ERT) 1Nat/J The Jackson Laboratory Stock No: 012586 Mouse Line
Headplate Neurotar Model 1, Model 3 Surgery Supply
Hemostatic forceps World Precision Instruments 501705 Surgery Tools
Holder for 15o Pointed Blade World Precision Instruments 501247 Surgery Tools
Holder for Scalpel Blades World Precision Instruments 500236 Surgery Tools
Iodine Prep Pads Avantor 15648-926 Surgery Supply
Isoflurane Piramal Surgery Supply
Isoflurane table top system with Induction Box Harvard Apparatus Equipment
Isoflurane Vaporizer SurgiVet Equipment
Krazy Glue Office Depot KG517 Reagent
Loctite 401 Henkel 40140 fast-curing instant adhesive
Loctite 454 Fisher Scientific NC9194415 cyanoacrylate adhesive gel
Micropipette Puller Sutter Instruments Equipment
Multiphoton Microscope Equipment
Nitrogen Matheson NI M200 Gas
Oxygen Matheson OX M250 Gas
Picospritzer Parker intracellular microinjection dispense system
Pipette Tips Rainin 17014340 Surgery Supply
Rodent Hair Trimmer Wahl Equipment
Saline (0.9% Sodium Chloride) Med Vet International RX0.9NACL-30BAC Surgery Supply
Scalpel Blades, Size 11 Integra 4-111 Surgery Tools
Scissors World Precision Instruments 503667 Surgery Tools
Stereotaxic Instrument Stoelting Equipment
Sugi Sponge Strips (sponge strips) Kettenbach Dental 31002 Surgery Supply
SURGIFOAM (gel foam) Ethicon 1972 Surgery Supply
Syringe with 26 G Needle BD 309625 Surgery Supply
Tamoxifen Sigma Aldrich T5648-1G Reagent
Ti:Sapphire Laser Coherent Equipment
Transfer Pipettes Fisher Scientific 13-711-9AM Surgery Supply
Water Blanket Fisher Scientific Equipment
Xylocaine MPF with Epinephrine (1:200,000), 10 mg/mL Fresenius Kabi USA Drug

Referências

  1. Cichon, J., Gan, W. B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature. 520 (7546), 180-185 (2015).
  2. Goncalves, J. T., et al. Circuit level defects in the developing neocortex of Fragile X mice. Nature Neuroscience. 16 (7), 903-909 (2013).
  3. Padmashri, R., et al. Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. Journal of Neuroscience. 33 (50), 19715-19723 (2013).
  4. Peters, A. J., Chen, S. X., Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature. 510 (7504), 263-267 (2014).
  5. Poskanzer, K. E., Yuste, R. Astrocytes regulate cortical state switching in vivo. Proceedings of the National Academy of Sciences of the United States of America. 113 (19), 2675-2684 (2016).
  6. Srinivasan, R., et al. Ca2+ signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nature Neuroscience. 18 (5), 708-717 (2015).
  7. Takata, N., et al. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. Journal of Neuroscience. 31 (49), 18155-18165 (2011).
  8. Yang, G., Pan, F., Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature. 462 (7275), 920-924 (2009).
  9. Zuo, Y., et al. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron. 46 (2), 181-189 (2005).
  10. Grutzendler, J., Gan, W. B. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain. NeuroRx. 3 (4), 489-496 (2006).
  11. Isshiki, M., et al. Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nature Communications. 5, 4742 (2014).
  12. Cruz-Martin, A., Crespo, M., Portera-Cailliau, C. Delayed stabilization of dendritic spines in fragile X mice. Journal of Neuroscience. 30 (23), 7793-7803 (2010).
  13. Mostany, R., et al. Altered synaptic dynamics during normal brain aging. Journal of Neuroscience. 33 (9), 4094-4104 (2013).
  14. Trachtenberg, J. T., et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 420 (6917), 788-794 (2002).
  15. Agarwal, A., et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron. 93 (3), 587-605 (2017).
  16. Bindocci, E., et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science. 356 (6339), (2017).
  17. Dana, H., et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods. 16 (7), 649-657 (2019).
  18. Han, S., Yang, W., Yuste, R. Two-color volumetric imaging of neuronal activity of cortical columns. Cell Reports. 27 (7), 2229-2240 (2019).
  19. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308 (5726), 1314-1318 (2005).
  20. Stowell, R. D., et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nature Neuroscience. 22 (11), 1782-1792 (2019).
  21. Madisen, L., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience. 13 (1), 133-140 (2010).
  22. Chen, S. X., et al. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nature Neuroscience. 18 (8), 1109-1115 (2015).
  23. Stobart, J. L., et al. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron. 98 (4), 726-735 (2018).
  24. Matsui, A., et al. Mouse in utero electroporation: controlled spatiotemporal gene transfection. Journal of Visualized Experiments: JoVE. (54), e3024 (2011).
  25. Roth, R. H., et al. Cortical synaptic AMPA receptor plasticity during motor learning. Neuron. 105 (5), 895-908 (2020).
  26. Stogsdill, J. A., et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature. 551 (7679), 192-197 (2017).
  27. Suresh, A., Dunaevsky, A. Relationship between synaptic AMPAR and spine dynamics: impairments in the FXS mouse. Cerebral Cortex. 27 (8), 4244-4256 (2017).
  28. Yang, G., et al. Transcranial two-photon imaging of synaptic structures in the cortex of awake head-restrained mice. Methods in Molecular Biology. 1010, 35-43 (2013).
  29. Dombeck, D. A., et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 56 (1), 43-57 (2007).
  30. Kislin, M., et al. Flat-floored air-lifted platform: a new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents. Journal of Visualized Experiments: JoVE. (88), e51869 (2014).
  31. Holtmaat, A., et al. high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols. 4 (8), 1128-1144 (2009).
  32. Hauglund, N. L., et al. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes. Journal of Neuroscience. 40 (11), 2371-2380 (2020).
  33. De Paola, V., et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron. 49 (6), 861-875 (2006).
  34. Cheng, A., et al. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nature Methods. 8 (2), 139-142 (2011).
  35. Yang, G., et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protocols. 5 (2), 201-208 (2010).
  36. Shih, A. Y., et al. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. Journal of Visualized Experiments: JoVE. (61), e3742 (2012).
  37. Helm, P. J., Ottersen, O. P., Nase, G. Analysis of optical properties of the mouse cranium–implications for in vivo multi photon laser scanning microscopy. Journal of Neuroscience Methods. 178 (2), 316-322 (2009).
  38. Stobart, J. L., et al. Long-term in vivo calcium imaging of astrocytes reveals distinct cellular compartment responses to sensory stimulation. Cerebral Cortex. 28 (1), 184-198 (2018).
  39. Pryazhnikov, E., et al. Longitudinal two-photon imaging in somatosensory cortex of behaving mice reveals dendritic spine formation enhancement by subchronic administration of low-dose ketamine. Scientific Reports. 8 (1), 6464 (2018).
  40. Thrane, A. S., et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proceedings of the National Academy of Sciences of the United States of America. 109 (46), 18974-18979 (2012).
  41. Paukert, M., et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron. 82 (6), 1263-1270 (2014).
  42. Delekate, A., et al. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nature Communications. 5, 5422 (2014).
check_url/pt/62633?article_type=t

Play Video

Citar este artigo
Padmashri, R., Tyner, K., Dunaevsky, A. Implantation of a Cranial Window for Repeated In Vivo Imaging in Awake Mice. J. Vis. Exp. (172), e62633, doi:10.3791/62633 (2021).

View Video