Здесь мы представляем протокол, в котором отдельные клетки контролируются на острые события и продуктивную инфекцию ВИЧ-1 на нанофлюидном устройстве. Данные визуализации определяют взаимодействие вируса и рецептора хозяина и динамику сигнального пути. Это первый метод нанофлюидной высокопроизводительной продольной одноклеточной культуры и визуализации для изучения кинетики передачи сигналов и молекулярных взаимодействий.
ВИЧ-1 вызывает хроническую инфекцию, которая поражает более 37 миллионов человек во всем мире. Люди, живущие с вирусом иммунодефицита человека (ВИЧ), испытывают коморбидность, связанную с хроническим воспалением, несмотря на антиретровирусную терапию. Однако эти воспалительные сигналы не были полностью охарактеризованы. Роль ранних событий входа в активацию клеточных сигнальных событий и последующей экспрессии генов не была отражена на уровне одной клетки. Здесь авторы описывают метод, который применяет принципы флуоресцентной микроскопии живых клеток к автоматизированной одноклеточной платформе, которая культурирует и визуаизирует клетки в течение пользовательских курсов времени, что позволяет проводить высокопроизводительный анализ динамических клеточных процессов. Этот анализ может отслеживать одноклеточную живую флуоресцентную микроскопию ранних событий, которые непосредственно следуют за инфекцией ВИЧ-1, в частности приток кальция, который сопровождает воздействие вируса и развитие продуктивной инфекции с использованием флуоресцентного репортерного вируса. Клетки MT-4 нагружают чувствительным к кальцию красителем и культивируют в изолированных ручках на нанофлюидном устройстве. Культивированные клетки инфицированы вирусом-репортером ВИЧ-1 (ВИЧ-1 NLCI). Флуоресцентный микроскоп, расположенный над нанофлюидным устройством, измеряет приток кальция в течение 8-минутного временного времени после острого воздействия ВИЧ-1. Продуктивная инфекция ВИЧ-1 измеряется в тех же клетках в течение 4-дневного интервала. Данные визуализации из этих временных курсов анализируются для определения взаимодействий вируса и рецептора хозяина и динамики сигнального пути. Авторы представляют интегрированную, масштабируемую альтернативу традиционным методам визуализации с использованием новой оптофлюидной платформы, способной к одноклеточной сортировке, культивации, визуализации и автоматизации программного обеспечения. Этот анализ может измерять кинетику событий при различных условиях, включая тип клетки, агонист или эффект антагониста, при измерении массива параметров. Это первый установленный метод для нанофлюидной высокопроизводительной продольной одноклеточной культуры и визуализации: этот метод может быть широко адаптирован для изучения кинетики клеточной сигнализации и динамических молекулярных взаимодействий.
Хроническое воспаление является основной причиной ВИЧ-ассоциированных ранних заболеваний и смертности1,2,3. Существует несколько механизмов, посредством которых ВИЧ может активировать воспалительную сигнализацию, и последние данные свидетельствуют о роли рецепторов P2X во входеВИЧ,которые являются кальциево-гатирующими аденозинтрифосфатными (АТФ) рецепторами3,4,5,6,7,8,9,10. Подтип пуринергических рецепторов P2X (P2XR) может быть важным фактором этого воспаления. Однако молекулярные механизмы взаимодействий ВИЧ-P2XR в значительной степени неизвестны и могут влиять на ранние и поздние этапы жизненного цикла вируса ВИЧ-1. Определение путей и кинетики, приводящих к хроническому воспалению, связанному с ВИЧ, имеет решающее значение для продвижения вариантов лечения людей с ВИЧ.
Чтобы оценить, агонизирует ли ВИЧ-1 непосредственно рецепторы P2X, активация P2XR и инфекция ВИЧ-1 должны измеряться параллельно. Независимо установлены анализы активности P2XR и инфекции ВИЧ-1: клеточный приток кальция является показателем активации P2XR, а продуктивная инфекция ВИЧ-1 может быть количественно определена по обилию РНК. Флуоресцентное обнаружение притока кальция возможно с помощью чувствительного к кальцию красителя Fluo-4, а вич-1-инфекцию можно визуализировать с помощью флуоресцентного репортерного вируса ВИЧ-NLCI11,12,13,14,15.
Поскольку эти показатели активации P2X (острый клеточный приток кальция) и инфекции ВИЧ-1 (синтез РНК ВИЧ-1) происходят в разных временных масштабах (минуты против дней), отсутствует высокопроизводительный метод, который позволяет проводить парный анализ активации P2XR и инфекции ВИЧ-1. Стандартные высокопроизводительные экспериментальные методы, такие как проточная цитометрия, позволяют проводить популяционный анализ, но не могут оценить взаимосвязь между острыми и продольными событиями в отдельных клетках. Альтернативно, одноклеточная визуализация со стандартной флуоресцентной микроскопией является низкопроизводительной. Эти экспериментальные ограничения представляют собой потребность в новых высокопроизводительных методах измерения связей между острыми и продольными клеточными событиями напрямую.
Описанная оптофлюидная система представляет собой новую платформу, способную к одноклеточной сортировке и изоляции, культивации, визуализации и программной автоматизации16,17,18,19. Эта система представляет собой интегрированную, высокопроизводительную альтернативу ограничениям традиционных методов визуализации. Платформа Beacon состоит из углекислого газа (CO2)и инкубатора с контролируемой температурой, который поддерживает ячейки, содержащиеся на чипе. Чип обладает светочувствительными транзисторами, которые генерируют электрический градиент в ответ на целевой свет. Эта результирующая диэлектрофоретическая сила используется для перемещения отдельных клеток через нанофлюидный чип в нужные области. Клетки сортируются в ручки на чипе, которые обеспечивают барьер для физической изоляции отдельных клеток. Непрерывный ламинарный поток питательных сред по всему чипу предотвращает миграцию клеток из ручек, обеспечивая при этом диффузию питательных веществ и реагентов, специфичных для эксперимента, рассеивая мелкие частицы. Флуоресцентный микроскоп находится над чипом. Программная автоматизация используется для захвата изображений чипа в указанный пользователем момент времени.
Всю клеточную характеристику выполняли с использованием оптофлюидной системы для одноклеточного отбора и манипуляций. Эта система состоит из интегрированных механических, микрофлюидных и оптических компонентов, которые позволяют манипулировать одноклеточными клетками, проводить анализ, культивировать и визуализировать. Клетки загружаются и культивируются на одноразовом нанофлюидном устройстве, состоящем из 3 500 отдельных камер (ручек), каждая из которых способна удерживать субнанолитровый объем. Клетки могут быть расположены внутри ручек с использованием светоиндуцированных диэлектрофоретических «клеток» и культивированы в условиях, контролируемых температурой иCO2. Микрофлюидика позволяет перфузию сред или буферов на чипе для клеточной культуры или лечения лекарственными препаратами. Приводимая в действие игла позволяет импортировать и экспортировать клетки из инкубированных и закрытых пластин колодца. Область чипа может быть визуализирована при 4-кратном или 10-кратном увеличении в ярко-полевом и флуоресцентном каналах (включая DAPI, FITC, TRed или Cy5) для характеристики клеточных фенотипов или функционального анализа. Вся система автоматизирована с помощью программного обеспечения, которое можно использовать для предварительно разработанных рабочих процессов или пользовательских экспериментов.
Были изучены взаимосвязи между вич-1-инфекцией и P2XR, но о высокопроизводительной процедуре для непосредственной характеристики этих взаимодействий параллельно не сообщалось. Здесь авторы описывают методологию изучения взаимодействий ВИЧ-P2XR путем отслеживания острого притока кальция и последующей продуктивной инфекции ВИЧ-1 на одноклеточном уровне. Примечательно, что это создает новый инструмент, который позволяет проводить прямые, высокопроизводительный, продольные измерения нескольких мишеней в отдельных клетках.
Описанная методика изучения взаимосвязи между притоком кальция и продуктивной инфекцией ВИЧ-1 в отдельных клетках может быть адаптирована для изучения внутриклеточной кинетики кальция в ответ на другие интересующий агонисты или антагонисты. Подготовка клеток к визуализации проста, ?…
The authors have nothing to disclose.
Мы благодарны за научные дискуссии с доктором Бенджамином Ченом. Эта работа финансировалась K08AI120806 (THS), R01DA052255 (THS и KB) и R21AI152833 (THS и KB).
Beacon Optofluidic System | Berkeley Lights | ||
Fetal Bovine Serum | Gibco | ||
FIJI | Open-source software | PMID: 22743772, 22930834 | |
Fluo-4 Calcium Imaging Kit | Thermo Fisher | F10489 | |
HIV-1 NLCINL4-3 | Laboratory of Benjamin Chen | PMID: 28148796 | |
Hyclone Pennecillin Streptomycin solution | GE Healthcare Life sciences | SV30010 | |
MT-4 cells | NIH AIDS Reagent | ARP-120 | |
OptoSelect 3500 chip | Berkeley Lights | ||
Pipettor Tips | Denville Scientific | P3020-CPS | |
Prism 9.0.0 | GraphPad | ||
RPMI-1640 Medium | Sigma-Aldrich | R8758 | |
Serological Pipettes | Fisher Brand | 13-678-11E | |
Tissue Culture Hood | Various models | ||
T75 flasks | Corning | 3073 |