Aquí describimos un protocolo para el empaquetado de pseudovirus y la medición de la actividad neutralizante de anticuerpos.
Desde 1996, los virus H5 de la influenza aviar altamente patógena (HPAI) de linaje A/ganso/Guangdong/1/96 han estado causando brotes de influenza en aves de corral y aves silvestres. Ocasionalmente, los humanos también son víctimas de ella, lo que resulta en una alta mortalidad. No obstante, la investigación del virus HPAI a menudo se ve obstaculizada, teniendo en cuenta que debe manejarse dentro de los laboratorios de nivel 3 de bioseguridad. Para abordar este problema, los pseudovirus se adoptan como una alternativa a los virus de tipo salvaje en algunos experimentos de estudios de HPAI H5. Los pseudovirus demuestran ser las herramientas ideales para estudiar anticuerpos neutralizantes contra los virus H5 HPAI. Este protocolo describe los procedimientos y pasos críticos de las preparaciones de pseudovirus H5 HPAI y los ensayos de neutralización de pseudovirus. Además, se analiza la solución de problemas, la limitación y las modificaciones de estos ensayos.
Desde 1996, los virus H5 de la influenza aviar altamente patógena (HPAI) de linaje A/goose/Guangdong/1/96 han estado causando brotes continuos de gripe en aves de corral y aves silvestres, lo que representa enormes pérdidas socioeconómicas en la industria avícola mundial. A veces, los humanos también se infectan con ella, enfrentándose a una alta tasa de mortalidad 1,2. Sin embargo, la investigación del virus HPAI a menudo se ve obstaculizada, dado que no se puede manejar fuera de los laboratorios de nivel 3 de bioseguridad. Para abordar este problema, los pseudovirus se adoptan como una alternativa a los virus de tipo salvaje en algunos experimentos de estudios de HPAI H5. Los pseudovirus son lo suficientemente seguros como para practicarlos en laboratorios de nivel 2 de bioseguridad.
Los pseudovirus H5 HPAI pertenecen a virus quiméricos que consisten en núcleos de virus sustitutos, envolturas lipídicas con glicoproteínas de superficie de los virus de la influenza y genes reporteros. Los núcleos de pseudovirus generalmente se derivan del virus de la inmunodeficiencia humana (VIH) lentiviral, retrovirus como el virus de la leucemia murina (MLV) y el virus de la estomatitis vesicular (VSV)3. Específicamente, el sistema de empaquetado del VIH-1 es ampliamente utilizado para producir pseudovirus de la influenza, donde los genes primarios proporcionados son gag y pol. El gen gag del VIH expresa proteínas centrales. El gen pol expresa la integrasa y la transcriptasa inversa, las cuales son necesarias para la expresión del gen reportero en las células transducidas. Imitando el genoma del virus sustituto, el gen reportero se adopta en el núcleo del pseudovirus en forma de ARN. El gen reportero expresará la proteína en las células huésped. Los niveles de expresión génica de los genes reporteros pueden ser utilizados para medir la eficiencia de la infección por pseudovirus 3,4. El reportero principal es luciferasa luciérnaga para medir las unidades de luminiscencia relativa (RLU) o la actividad relativa de luciferasa (RLA) en células transducidas. También se utilizan otros reporteros como lacZ, Gaussia y Renilla luciferasa, solo que en menor medida5.
Los pseudovirus son herramientas ideales para estudiar anticuerpos neutralizantes contra los virus H5 HAPI. Para medir la potencia de los anticuerpos neutralizantes, se utilizan ensayos de neutralización de pseudovirus (PN)6. La hemaglutinina (HA) y la neuraminidasa (NA) son glicoproteínas en la superficie del virus de la gripe A 7,8. El AH está compuesto por un dominio globular de la cabeza para la unión al receptor y un dominio del tallo para la fusión de la membrana. La proteína NA tiene la actividad sialidasa para facilitar la liberación del virus 7,8. Un ensayo de PN puede medir anticuerpos neutralizantes dirigidos a proteínas HA. Los anticuerpos neutralizantes dirigidos a la región de la cabeza y el tallo de HA también se pueden detectar mediante ensayos de unión viral y entrada. En comparación con los virus de tipo salvaje, los experimentos de neutralización de pseudovirus tienen valores de detección más sensibles, se pueden manejar de manera segura en un laboratorio de bioseguridad de Nivel 2 y, en general, son más fáciles de operar en la práctica.
Este protocolo presenta en detalle los procedimientos y pasos críticos de las preparaciones de pseudovirus H5 HPAI y los ensayos de PN. Además, se analiza la solución de problemas, la limitación y las modificaciones de estos ensayos. En este estudio, se utilizó como ejemplo la cepa A/Thailand/1(KAN)-1/2004(TH) de los virus H5N1 HPAI. Para obtener los sueros inmunes utilizados en los ensayos, este protocolo seleccionó la proteína HA procedente de la cepa TH como inmunógeno para inmunizar ratones.
HEK293FT células se utilizan generalmente como células de empaquetamiento para producir pseudovirus. La detección regular de micoplasmas es esencial durante el cultivo celular. La contaminación por micoplasma puede disminuir drásticamente los rendimientos de pseudovirus y, a veces, cerca de cero. En comparación con otras contaminaciones, las contaminaciones por micoplasma no provocan cambios en el valor del pH ni en la turbidez del medio de cultivo celular. Incluso una alta concentración de micoplasma no es visibl…
The authors have nothing to disclose.
Este trabajo fue apoyado por las becas de investigación del Proyecto de Desarrollo de Capacidades de Innovación de la provincia de Jiangsu (BM2020019), el Proyecto Científico y Tecnológico de Shenzhen (No. JSGG20200225150702770), el Programa de Investigación Estratégica Prioritaria de la Academia China de Ciencias (XDB29030103), el Proyecto Científico y Tecnológico de Guangdong (No. 2020B1111340076) y el Programa de Investigación Abierta del Laboratorio de la Bahía de Shenzhen (No. SZBL202002271003).
1% Chiken Erythrocyte | Bio-channel | BC-RBC-C001 | Reagent |
96-well cell culture plates (flat-bottom) | Thermo fisher scientific | 167008 | consumable material |
96-well cell culture plates (round-bottom) | Thermo fisher scientific | 163320 | consumable material |
Allegra X-15R | Beckman coulter | — | Equipment/Centrifuge |
BD Insulin Syringes | BD | 324910 | consumable material |
Calcium Chloride Anhydrous | AMRESCO | 1B1110-500G | Reagent |
chloroquine diphosphate | Selleck | S4157 | Reagent |
Dulbecco’s Modified Eagle Medium (DMEM) | Gibco | 12100-046 | Reagent |
Fetal Bovine Serum | Gibco | 16000-044 | Reagent |
HEK293FT | Gibco | R700-07 | Cell line |
HEPES FREE ACID | AMRESCO | 0511-250G | Reagent |
HIV-1 p24 Antigen ELISA | ZeptoMetrix | 801111 | Reagent kit |
Luciferase Assay System Freezer Pack | Promega | E4530 | Reagent kit |
MDCK.1 | ATCC | CRL-2935 | Cell line |
Microcentrifuge Tubes 1.5 mL | Thermo fisher scientific | 509-GRD-Q | consumable material |
Nunc Conical Centrifuge Tubes 15 mL | Thermo fisher scientific | 339650 | consumable material |
Nunc Conical Centrifuge Tubes 50 mL | Thermo fisher scientific | 339652 | consumable material |
Nunc EasYFlask 75 cm2 | Thermo fisher scientific | 156499 | consumable material |
Penicillin-Streptomycin | Gibco | 15140-122 | Reagent |
Pipette Tips (10 μL) | Thermo fisher scientific | TF102-10-Q | consumable material |
Pipette Tips (100 μL) | Thermo fisher scientific | TF113-100-Q | consumable material |
Pipette Tips (1000 μL) | Thermo fisher scientific | TF112-1000-Q | consumable material |
Serological pipets (5 mL) | Thermo fisher scientific | 170355N | consumable material |
Serological pipets (10 mL) | Thermo fisher scientific | 170356N | consumable material |
Trypsin/EDTA | Gibco | 25200-072 | Reagent |
Varioskan Flash | Thermo fisher scientific | — | Equipment/Microplate reader |
Water Jacket Incubator | Thermo fisher scientific | 3111 | Equipment/Cell incubator |
Pentobarbital sodium salt | Sigma | 57-33-0 | Reagent |