Ce protocole fournit les étapes de l’extraction de l’ADN à la mise en place expérimentale de la PCR numérique des gouttelettes (ddPCR), y compris l’analyse pour l’identification et la quantification des événements de jonction terminale non homologues (NHEJ) sur les sites cibles après le clivage Cas9 induit par l’ARNg et la réparation de l’ADN. D’autres utilisations de cette méthode comprennent des applications telles que la détection de polymorphisme et la vérification des variantes d’édition de gènes.
Les progrès récents de la génomique des moustiques et des technologies de génie génétique ont favorisé le besoin de méthodes rapides et efficaces pour détecter les variations ciblées de la séquence d’ADN à grande échelle. Plus précisément, la détection des insertions et des délétions (indels) aux sites génétiquement modifiés générés par l’ARN guide CRISPR (aRNg) / jonction terminale non homologue (NHEJ) médiée par Cas9 est importante pour évaluer la fidélité de la mutagénèse et la fréquence des changements involontaires. Nous décrivons ici un protocole pour la PCR par gouttelettes numériques (ddPCR) qui est bien adapté à l’analyse NHEJ à haut débit. Bien que cette méthode ne produise pas de données permettant d’identifier la variation de séquence individuelle, elle fournit une estimation quantitative de la variation de séquence au sein d’une population. De plus, avec des ressources appropriées, ce protocole peut être mis en œuvre dans un laboratoire sur le terrain plus facilement que le séquençage de nouvelle génération ou de Sanger. La ddPCR a également un délai d’exécution des résultats plus rapide que l’une ou l’autre de ces méthodes, ce qui permet une analyse plus rapide et plus complète de la variation génétique des populations sauvages lors d’essais sur le terrain d’organismes génétiquement modifiés.
Les forçages génétiques ont un immense potentiel pour contrôler les populations d’insectes d’intérêt médical et agricole1,2,3,4,5. Par exemple, les systèmes de forçage génétique basés sur les nucléases CRISPR Cas et les ARN guides (ARNg) peuvent être utilisés pour modifier les populations de moustiques vecteurs en introduisant des caractères qui confèrent une réfractaireté aux parasites du paludisme conduisant à une transmission réduite et à moins de maladies1,4,5. Le système de forçage génétique se copie lui-même et le trait associé d’un chromosome homologue à un autre dans les cellules germinales pré-méiotiques, ce qui garantit que la majorité de la progéniture hérite de la pulsion et crée le potentiel de modification durable et durable de la population sur le terrain. Cependant, l’un des inconvénients des méthodes basées sur cas/aRNg est la possibilité de générer des mutations d’insertion et de délétion (indel) par réparation de l’ADN à jonction terminale non homologue (NHEJ), entraînant la génération d’allèles résistants à l’entraînement, qui, lorsqu’ils sont accumulés à une fréquence suffisamment élevée dans la population, peuvent empêcher le système d’entraînement de se propager1,2,3,4 . Ce protocole détaille une méthode fiable et à haut débit qui peut déterminer la prévalence et la quantité relative de mutations indel, à la fois au niveau de la population et de l’individu, au cours du forçage génétique basé sur Cas / ARNg.
Les méthodes de séquençage de nouvelle génération (NGS) offrent une résolution de séquençage inégalée. Cependant, le coût et les exigences techniques associés au NGS interdisent les essais de routine et limitent son utilisation comme méthode à haut débit pour évaluer les indels6,7,8. Les méthodes traditionnelles de quantification par PCR sont utilisées depuis longtemps comme procédure d’évaluation standard pour les indels du génome; cependant, ces méthodes nécessitent beaucoup de main-d’œuvre, prennent beaucoup de temps pour obtenir des données et présentent un degré élevé de variabilité. La PCR par gouttelettes numériques (ddPCR) s’est avérée plus sensible à la détection des mutations que le séquençage de Sanger dans certaines applications et a une limite de détection inférieure à celle du NGS dans d’autres6,7,8,9. De plus, le coût d’évaluation d’un ensemble d’échantillons et le délai d’exécution pour obtenir des résultats sont moins coûteux et plus rapides, respectivement, pour la ddPCR que le séquençage de Sanger ou le séquençage NGS9. À l’aide d’un système à double sonde, le test Drop-Off identifie les allèles NHEJ en fonction de l’absence de séquence de type sauvage (WT) au site de coupe Cas9 cible dirigé par l’ARNg. Dans ce test, un amplicon court comprenant le site de coupe prédit du système Cas/aRNg est amplifié avec une paire d’amorces spécifique. Une sonde fluorescente est conçue pour se lier à une région conservée de l’amplicon et une autre sonde fluorescente reconnaît la séquence WT du site de coupe. En présence d’un allèle NHEJ, ce dernier ne se liera pas à l’amplicon.
L’utilisation de la ddPCR permet de concevoir des amorces pour cibler les délétions, les différences de paires de bases uniques et les insertions, ce qui permettra le profilage NHEJ dans les analyses de population de moustiques9. Compte tenu de ces caractéristiques attrayantes, nous avons créé un protocole pour la ddPCR pour la détection à haut débit des indels générés par un système de forçage génétique basé sur Cas / aRNg chez les moustiques.
La PCR par gouttelettes numériques est une méthode efficace pour déterminer la présence d’allèles indel résultant d’événements NHEJ dans un système de forçage génétique basé sur Cas/ARNg et permet de quantifier la fréquence de ces allèles chez les individus ou les populations. Certaines étapes du protocole doivent être suivies avec un soin particulier pour obtenir des résultats fiables. Tout d’abord, l’extraction de l’ADN génomique doit être effectuée avec soin pour assurer une qualité élevée et une quantité suffisante. Une bonne extraction permettra de déterminer avec précision les copies du génome haploïde par réaction. D’après notre expérience, un kit disponible dans le commerce (voir Tableau des matériaux)a fourni des extractions d’ADN de haute qualité constantes. Cependant, les extractions de moustiques individuels peuvent s’avérer particulièrement difficiles car la pastille d’ADN devient difficile à visualiser et peut facilement être aspirée avec le surnageant si elle n’est pas prudente. Deuxièmement, les apprêts et les sondes doivent être conçus avec soin. Avant de terminer l’expérience ddPCR, assurez-vous que les amorces conçues aboutissent à un seul produit PCR en effectuant d’abord une PCR traditionnelle et en visualisant un seul produit par électrophorèse sur gel. La sonde FAM de référence doit également être conçue de manière à être complémentaire à une séquence hautement conservée. Cela garantira des détections précises des allèles WT dans une population diversifiée. Les combinaisons amorce/sonde pour chaque expérience unique auront des conditions de thermocyclerie différentes, et il est recommandé d’optimiser ces conditions à l’aide d’un gradient thermique.
Il existe d’autres méthodes d’identification des indels, telles que le séquençage de Sanger ou le NGS. Le séquençage de Sanger est limité car il a une limite de détection inférieure et un faible pouvoir de découverte pour identifier de nouvelles variantes. Le séquençage sanger est également exigeant en main-d’œuvre et n’est pas à haut débit. Par rapport au séquençage Sanger, NGS n’a pas les mêmes limitations de faible sensibilité, de puissance de découverte et de débit. Un autre avantage du NGS est sa capacité à détecter une variété de mutations allant du polymorphisme mononucléotidique (SNP) aux réarrangements. Cependant, le NGS est une méthode plus coûteuse et plus longue dans l’application de la détermination des indels associés à Cas9 / ARNg, car il n’y a qu’une seule région cible d’intérêt et elle convient mieux aux analyses à plus grande échelle du génome. Par rapport aux méthodes susmentionnées, ddPCR est à haut débit et a un temps d’exécution rapide. Si les matériaux et instruments ddPCR sont disponibles en interne, 96 échantillons peuvent être traités en 1 à 2 jours, ce qui le rend bien adapté à l’analyse rapide d’essais à grande échelle d’organismes modifiés par Cas9 / ARNg.
Bien que de nombreux avantages existent pour la ddPCR, il existe également des limites. Tout d’abord, l’équipement ddPCR n’est pas fréquemment disponible dans un environnement de laboratoire indépendant. L’équipement ddPCR peut être disponible en commun dans les grands établissements de recherche, mais cela ne facilite pas la génération et l’analyse des données à l’extérieur de l’établissement. Deuxièmement, contrairement aux alternatives, la ddPCR ne fournit pas les séquences uniques individuelles de mutations indel identifiées. La PCR par gouttelettes numériques fournira la fréquence des mutations indel au sein d’une population, mais sans la séquence, on ne peut pas déterminer si les indels présents sont plus susceptibles de conserver ou d’inhiber la fonction du gène d’intérêt. La méthode ddPCR est peut-être mieux adaptée pour analyser les populations sauvages après un essai de libération sur le terrain d’un organisme d’entraînement à base de Cas9 / ARNg, car elle peut déterminer efficacement la fréquence d’introduction du transgène dans la population indigène et la génération d’indels au sein de la population en temps quasi réel. En raison du délai d’exécution rapide de la ddPCR, il serait possible d’effectuer un échantillonnage et d’analyser la population dans une région d’essai sur le terrain chaque semaine si les matériaux étaient disponibles localement. Les coûts de démarrage pour acheter, importer et mettre en place l’équipement ddPCR seraient élevés dans les laboratoires éloignés, mais les avantages de pouvoir évaluer rigoureusement une population sauvage alors qu’elle subit des modifications à partir d’un système d’entraînement justifieraient les coûts.
The authors have nothing to disclose.
Le financement a été fourni par l’Université de Californie Irvine Malaria Initiative. AAJ est professeur Donald Bren à l’Université de Californie à Irvine.
Reagents | |||
ddPCR Super Mix for Probes (no dUTP) | Bio-Rad | 1863024 | |
DNA extraction reagent (e.g. Wizard Genomic DNA Purification kit) | Promega | A1120 | |
EDTA (pH 8.0) | Invitrogen | AM9260G | |
Ethanol, 200 Proof | Thermo Fisher Scientific | A4094 | |
Isopropanol (Certified ACS) | Thermo Fisher Scientific | A416-500 | |
Nuclei Lysis Solution (NLS) (Wizard Genomic DNA Purification kit) | Promega | A1120 | |
PCR-grade Water | Any certified PCR-grade water can be used | ||
Protein Precipitation Solution (Wizard Genomic DNA Purification kit) | Promega | A1120 | |
Proteinase K 20 mg/mL | Thermo Fisher Scientific | AM2546 | |
Materials | |||
ddPCR 96-Well Plate | Bio-Rad | 12001925 | |
Droplet Generator DG8 Cartridge and Gaskets | Bio-Rad | 1864007 | |
Droplet Generation Oil for probes | Bio-Rad | 1863005 | |
Fluorescent probes (e.g. FAM/HEX probes) | Sigma-Aldrich | N/A | Probes are experiment specific and can be purchased from any certified seller available. |
Forward and Reverse oligonucleotide primers | Sigma-Aldrich | N/A | Primers are experiment specific and can be purchased from any certified seller available. |
Equipment | |||
C1000 Touch Thermal Cycler | Bio-Rad | 1851148 | Can use other Thermo cycler with gradient function and deep well |