Summary

基于肽矩阵的 HBV 特异性 CD4 T 细胞响应和 HLA-DR 受限 CD4 T 细胞表位的识别分析

Published: October 20, 2021
doi:

Summary

根据乙型肝炎病毒(HBV)衍生肽基质,可在识别乙肝病毒特异性CD4 T细胞表位的同时,对乙肝病毒特异性CD4 T细胞反应进行评估。

Abstract

CD4 T细胞在慢性乙型肝炎的发病机制中起着重要作用。CD4 T细胞作为多功能细胞群,根据它们分泌的细胞因子被归类为独特的功能子集:例如,CD4 T帮手1细胞的IFN-γ,CD4 T帮手2细胞的IL-4和IL-13,CD4 T卵泡辅助细胞的IL-21,CD4 T助剂细胞的IL-17。分析乙型肝炎病毒(HBV)特异性CD4 T细胞,基于细胞因子分泌后,乙肝病毒衍生肽刺激,不仅可以提供有关乙肝病毒特异性CD4 T细胞反应的大小的信息,还可以提供有关HBV特异性CD4 T细胞功能子集的信息。新的方法,如转录学和代谢学分析,可以提供关于HBV特异性CD4 T细胞的更详细的功能信息。这些方法通常需要基于肽主要组织相容性复合II多默的活性HBV特异性CD4 T细胞进行分离,而目前有关HBV特异性CD4 T细胞表位的信息有限。基于乙肝病毒衍生肽基质,开发出一种利用慢性乙肝病毒感染患者的周围血单核细胞样本同时评估HBV特异性CD4 T细胞反应和识别HBV特异性CD4 T细胞表位的方法。

Introduction

目前,有3种主要方法分析抗原特异性T细胞。第一种方法基于T细胞受体和肽(同位素)之间的相互作用。抗原特异性T细胞可直接沾染肽主要组织相容性复合物(MHC)多元体。这种方法的优点是,它可以获得可行的抗原特异性T细胞,适合下游转录学/代谢学分析。这种方法的一个局限性是,它不能提供有关整个T细胞对特定抗原的反应的信息,因为它需要验证表位肽,而目前特定抗原的识别表位数量有限。与乙肝病毒(HBV)特异性CD8T细胞表位相比,目前发现的HBV特异性CD4 T细胞表位较少使得该方法目前不太适用于HBV特异性CD4 T细胞的分析。

第二种方法是基于抗原肽刺激3后一系列激活诱发的标记物的调高。常用的标记包括CD69,CD25,OX40,CD40L,PD-L1,4-1BB4。目前,该方法已用于分析接种疫苗的5、6、人免疫机能丧失病毒感染患者7例、严重急性呼吸系统综合症冠状病毒2例感染患者8、9例等抗原特异性T细胞反应。与基于检测的肽-MHC多默尔不同,这种方法不受验证表位的限制,可以获得可行的细胞进行下游分析。这种方法的一个局限性是它不能提供有关抗原特异性T细胞细胞因子特征的信息。此外,一些激活的抗原非特异性细胞表达这些激活诱导标记可能有助于分析中的背景信号,这可能是一个问题,尤其是当目标抗原特异性T细胞很少时。目前,该方法在HBV特异性CD4 T细胞4上的应用有限。该方法能否以可靠的方式用于分析乙肝特异性CD4 T细胞,还有待进一步研究。

第三种方法基于抗原肽刺激后的细胞因子分泌。与激活诱导标记分析一样,此方法不受验证表位的限制。这种方法可以直接揭示抗原特异性T细胞的细胞因子特征。这种方法的灵敏度低于激活诱导标记法,因为它依赖于抗原特异性T细胞的细胞因子分泌,测试的细胞因子数量通常有限。目前,该方法在HBV特异性T细胞分析中得到广泛应用。由于细胞因子分泌HBV特异性T细胞很难通过直接前体内肽刺激10,11检测到,HBV特异性T细胞的细胞因子特征通常分析后,10天的体外肽刺激膨胀12,13,14,15,16。已利用以矩阵形式排列肽池,以方便识别抗原特异性表位17、18。结合肽基质和细胞因子分泌分析,开发出一种评估HBV特异性CD4 T细胞反应,同时识别HBV特异性CD4 T细胞表位的方法。在此协议中,将描述此方法的详细信息。HBV 核心抗原被选为本协议中演示的示例。

Protocol

书面知情同意从每个患者包括在研究。研究协议符合1975年《赫尔辛基宣言》的伦理准则,西南医院医学伦理委员会事先批准后就反映了这一点。 1. HBV衍生肽基质的设计 从NCBI数据库(GenBank:AFY98989.1)下载HBV核心抗原的氨基酸序列。 从肽合成服务提供商处购买 HBV 核心抗原衍生肽(由 35 15 mer 肽组成的面板,由 10 种残留物重叠,纯度> 90%,4 毫克/肽)。 …

Representative Results

细胞因子分泌CD4 T细胞的频率计算为单个生产者和双生产者的总和。 图1显示,TNF-α分泌CD4 T细胞的频率和IFN-γ在背景控制(DMSO)中分泌CD4 T细胞的频率分别为0.154%和0.013%。TNF-α分泌CD4 T细胞的频率和IFN-γ分泌CD4 T细胞的频率分别为0.206和0.017,因此TNF-α分泌CD4 T细胞反应和IFN-γ分泌CD4 T细胞反应的频率均为负数。TNF-α分泌CD4 T细胞的频率和IFN-γ分泌CD4 T细胞的频率分别为2.715%和0.9…

Discussion

本协议中最关键的步骤如下: 1) 足够高生存能力的 PBMC 开始 PC 扩展:2) 适当的 PBMC 扩展环境;3) 在表位识别之前,完全去除 PBMC 培养中的残留肽池。

此协议中的所有分析都取决于 CD4 T 细胞的强劲增殖。一般来说,10天扩展后的PC数量将是初始数量的2-3倍。PBMC 的细胞数和生存能力是 PBMC 扩展的两个关键因素。如果目的只是分析HBV特异性CD4 T细胞而没有表位识别,则合理减?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(81930061)、重庆市自然科学基金(cstc2019jy-bshX0039、cstc2019jcyj-zdxmX0004)和中国钥匙的支持
传染病专科项目(2018ZX10723203)。

Materials

Albumin Bovine V (BSA) Beyotime ST023
APC-conjugated Anti-human TNF-α eBioscience 17-7349-82 Keep protected from light
Benzonase Nuclease Sigma-Aldrich E1014 Limit cell clumping
B lymphoblastoid cell lines (BLCLs) FRED HUTCHINSON CANCER RESEARCH CENTER IHW09126 HLA-DRB1*0803 homozygote
B lymphoblastoid cell lines (BLCLs) FRED HUTCHINSON CANCER RESEARCH CENTER IHW09121 HLA-DRB1*1202 homozygote
Cell Culture Flask (T75) Corning 430641
Cell Culture Plate (96-well, flat bottom) Corning 3599 Flat bottom
Cell Culture Plate (96-well, round bottom) Corning 3799 Round bottom
Cell Strainer Corning CLS431751 Pore size 70 μm, white, sterile
Centrifuge Tube (15 mL) KIRGEN KG2611 Sterile
Centrifuge Tube (50 mL) Corning 430829 Sterile
Centrifuge, Refrigerated Eppendorf 5804R
Centrifuge, Refrigerated Thermo ST16R
Centrifuge, Refrigerated Thermo Legend Micro 21R
Cytofix/Cytoperm Kit (Transcription Factor Buffer Set) BD Biosciences 562574 Prepare solution before use
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich D2650 Keep at room temperature to prevent crystallization
Dulbecco’s Phosphate Buffered Saline Prepare ddH2O (1000 ml) containing NaCl (8000 mg), KCl (200 mg), KH2PO4 (200 mg), and Na2HPO4.7H2O (2160  mg). Adjust PH to 7.4. Sterilize through autoclave.
Ficoll-Paque Premium GE Healthcare 17-5442-03
Filter Tips (0.5-10) Kirgen KG5131 Sterile
Filter Tips (100-1000) Kirgen KG5333 Sterile
Filter Tips (1-200) Kirgen KG5233 Sterile
FITC-conjugated Anti-human CD4 BioLegend 300506 Keep protected from light
Fixable Viability Dye eFluor780 eBioscience 65-0865-14 Keep protected from light
GolgiStop Protein Transport Inhibitor (Containing Monensin) BD Biosciences 554724 Protein Transport Inhibitor
Haemocytometer Brand 718620
HBV Core Antigen Derived Peptides ChinaPeptides
HEPES Gibco 15630080 100 ml
Human Serum AB Gemini Bio-Products 100-51 100 ml
Ionomycin Sigma-Aldrich I0634
KCl Sangon Biotech A100395-0500
KH2PO4 Sangon Biotech A100781-0500
LSRFortessa Flow Cytometer BD
L-glutamine Gibco 25030081 100 ml
Microcentrifuge Tube (1.5 mL) Corning MCT-150-C Autoclaved sterilization before using
Microplate Shakers Scientific Industries MicroPlate Genie
Mitomycin C Roche 10107409001
Na2HPO4.7H2O Sangon Biotech A100348-0500
NaCl Sangon Biotech A100241-0500
PCR Tubes (0.2 mL) Kirgen KG2331
PE/Cy7-conjugated Anti-human CD8 BioLegend 300914 Keep protected from light
PE-conjugated Anti-human IFN-γ eBioscience 12-7319-42 Keep protected from light
Penicillin Streptomycin Gibco 15140122 100 ml
PerCP-Cy5.5-conjugated Anti-human CD3 eBioscience 45-0037-42 Keep protected from light
Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich P1585
Recombinant Human IL-2 PeproTech 200-02
Recombinant Human IL-7 PeproTech 200-07
RPMI Medium 1640 Gibco C11875500BT 500 ml
Sodium pyruvate,100mM Gibco 15360070
Trypan Blue Stain (0.4%) Gibco 15250-061
Ultra-LEAF Purified Anti-human HLA-DR BioLegend 307648
Wizard Genomic DNA Purification Kit Promega A1125

Referências

  1. Desmond, C. P., Bartholomeusz, A., Gaudieri, S., Revill, P. A., Lewin, S. R. A systematic review of T-cell epitopes in hepatitis B virus: identification, genotypic variation and relevance to antiviral therapeutics. Antiviral Therapy. 13, 161-175 (2008).
  2. Mizukoshi, E., et al. Cellular immune responses to the hepatitis B virus polymerase. Journal of Immunology. 173, 5863-5871 (2004).
  3. Wölfl, M., Kuball, J., Eyrich, M., Schlegel, P. G., Greenberg, P. D. Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry Part A. 73, 1043-1049 (2008).
  4. Reiss, S., et al. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS One. 12, 0186998 (2017).
  5. Herati, R. S., et al. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Science Immunology. 2, (2017).
  6. Bowyer, G., et al. Activation-induced Markers Detect Vaccine-Specific CD4+ T Cell Responses Not Measured by Assays Conventionally Used in Clinical Trials. Vaccines. 6, (2018).
  7. Morou, A., et al. Altered differentiation is central to HIV-specific CD4(+) T cell dysfunction in progressive disease. Nature Immunology. 20, 1059-1070 (2019).
  8. Grifoni, A., et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 181, 1489-1501 (2020).
  9. Meckiff, B. J., et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19. Cell. , (2020).
  10. Boni, C., et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. Journal of Virology. 81, 4215-4225 (2007).
  11. Chang, J. J., et al. Reduced hepatitis B virus (HBV)-specific CD4+ T-cell responses in human immunodeficiency virus type 1-HBV-coinfected individuals receiving HBV-active antiretroviral therapy. Journal of Virology. 79, 3038-3051 (2005).
  12. Boni, C., et al. Restored Function of HBV-Specific T Cells After Long-term Effective Therapy With Nucleos(t)ide Analogues. Gastroenterology. 143, 963-973 (2012).
  13. Kennedy, P. T., et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology. 143, 637-645 (2012).
  14. de Niet, A., et al. Restoration of T cell function in chronic hepatitis B patients upon treatment with interferon based combination therapy. Journal of Hepatology. 64, 539-546 (2016).
  15. Rinker, F., et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. Journal of Hepatology. 69, 584-593 (2018).
  16. Wang, H., et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. Journal of Hepatology. 72, 45-56 (2020).
  17. Hoffmeister, B., et al. Mapping T cell epitopes by flow cytometry. Methods. 29, 270-281 (2003).
  18. Anthony, D. D., Lehmann, P. V. T-cell epitope mapping using the ELISPOT approach. Methods. 29, 260-269 (2003).
check_url/pt/62387?article_type=t

Play Video

Citar este artigo
Xiao, J., Wan, X., Wang, H., Deng, G. Analysis of HBV-Specific CD4 T-cell Responses and Identification of HLA-DR-Restricted CD4 T-Cell Epitopes Based on a Peptide Matrix. J. Vis. Exp. (176), e62387, doi:10.3791/62387 (2021).

View Video