クライオ電子顕微鏡における単粒子分析は、高分解能での生体アンサンブルの構造を決定するために使用される主な技術の1つです。Scipionは、顕微鏡で取得した情報を処理し、生物学的標本の3D再構成を達成するためのパイプライン全体を作成するためのツールを提供します。
クライオ電子顕微鏡は、原子に近い分解能で高分子の構造情報を明らかにする生物研究において最も重要なツールの1つとなっています。単粒子分析では、ガラス化されたサンプルを電子ビームで画像化し、顕微鏡カラムの最後にある検出器がそのサンプルのムービーを生成します。これらの映画には、ランダムな向きで同一の粒子の何千もの画像が含まれています。データは、最終的な3D再構成されたボリュームを取得するために、複数のステップで画像処理ワークフローを通過する必要があります。画像処理ワークフローの目的は、調査中の標本を再構築できるように取得パラメータを特定することです。Scipion は、統合フレームワークで複数の画像処理パッケージを使用してこのワークフローを作成するためのすべてのツールを提供し、結果のトレーサビリティも可能にします。この記事では、Scipionの画像処理ワークフロー全体が、実際のテストケースから得られたデータと共に提示され、議論され、顕微鏡で得られた映画から高解像度の最終的な3D再構成に必要なすべての詳細を提供します。また、組み合わせ方法を可能にするコンセンサスツールを用い、ワークフローのあらゆるステップに沿って結果を確認し、得られた結果の精度を向上させる力について議論する。
クライオ電子顕微鏡(cryo-EM)では、ガラス化凍結水和標本の単粒子分析(SPA)は、分子相互作用と生体アンサンブルの機能を理解することができるため、生体高分子のイメージングの最も広く使用され、成功した変異体の1つです。これは、このイメージング技術の最近の進歩のおかげで、「分解能革命」2 を生み出し、ほぼ原子分解能で生物学的3D構造の決定に成功しました。現在、SPAクライオEMで達成された最高の解像度は、アポフェリチン3 (EMDBエントリ:11668)のための1.15 Åでした。これらの技術の進歩は、サンプル調製4、画像取得5、および画像処理方法6における改良を含む。この記事では、この最後のポイントに焦点を当てています。
簡単に言えば、画像処理方法の目的は、顕微鏡の撮像プロセスを反転させ、研究中の生物学的標本の3D構造を回収するための全ての取得パラメータを特定することである。これらのパラメータは、カメラのゲイン、ビーム誘導運動、顕微鏡の収差(主に焦点が短い)、各粒子の3D角方向と平行移動、および立体構造変化を伴う標本を有する場合の立体状態である。しかし、パラメータの数は非常に多く、cryo-EMは放射線損傷を避けるために低線量の画像を使用する必要があり、取得した画像の信号対雑音比(SNR)を大幅に減少させます。したがって、問題を明確に解決することはできず、計算されるすべてのパラメータは推定値に過ぎません。画像処理ワークフローに沿って、正しいパラメータを特定し、残りのパラメータを破棄して最終的に高解像度の3D再構築を取得する必要があります。
顕微鏡で生成されたデータはフレームで収集されます。単純化すると、フレームには、電子計数検出器が使用されるたびに、画像内の特定の位置(ピクセル)に到着した電子の数が含まれます。特定の視野では、いくつかのフレームが収集され、これをムービーと呼ばれます。低電子線量は、サンプルを破壊する可能性のある放射線損傷を避けるために使用されるため、SNRは非常に低く、同じ映画に対応するフレームを平均化して、サンプルに関する構造情報を明らかにする画像を得る必要があります。しかし、単純な平均が適用されるだけでなく、補償が必要なビーム誘導運動のために、イメージング時間中にサンプルがシフトやその他の種類の動きを受ける可能性があります。シフト補正および平均フレームは、顕微鏡写真を生成します。
顕微鏡写真が得られたら、マイクログラフのコントラストの変化を周波数の関数として表すコントラスト伝達関数(CTF)と呼ばれる、それぞれの顕微鏡によって導入された収差を推定する必要があります。そして、粒子を選択して抽出することができ、これは粒子ピッキングと呼ばれる。すべての粒子は、研究中の標本のコピーを1つだけ含む小さな画像でなければなりません。パーティクルピッキングには、粒子の外観の基本的なパラメータ化を使用して顕微鏡写真の全セット(粒子サイズなど)、2)パーティクルがどのように見えるかを学習する要素、および3)画像テンプレートを使用する3つのアルゴリズムがあります。各ファミリには、後で表示されるさまざまなプロパティがあります。
マイクログラフで見つかった一連のパーティクルは、純粋なノイズ画像、重なり合うパーティクル、またはその他のアーティファクトを含むサブセットを破棄してパーティクルのセットを消去する 2 つの目標を持つ 2D 分類プロセスで使用され、2) 各クラスを表す平均粒子を初期情報として使用して 3D 初期ボリュームを計算できます。
3D 初期ボリュームの計算は、次の重要なステップです。3D構造を得る問題は、グローバル最小が元の構造を表す最良の3Dボリュームである多次元ソリューションランドスケープにおける最適化の問題と見なすことができますが、最適でないソリューションを表すいくつかのローカルミニマが見つかり、トラップされやすい場所です。初期ボリュームは検索プロセスの開始点を表すため、初期ボリューム推定が不適切な場合、グローバル最小を見つけることができない可能性があります。初期ボリュームから、3D分類ステップは、異なる立体構造状態を発見し、再び粒子のセットをきれいにするのに役立ちます。目標は、粒子の構造的に均質な集団を得る。その後、3D の改良ステップが、すべてのパーティクルの角度と変換のパラメータを改良して、最高の 3D ボリュームを得る必要があります。
最後に、最後のステップで、得られた3D再構成を研ぎ、磨くことができる。シャープニングは、再構築された体積の高周波数を高めるプロセスであり、研磨は、粒子のレベルでCTFまたはビーム誘導運動補償として、いくつかのパラメータをさらに洗練するためのステップです。また、ワークフローの最後に達成された解像度を理解するために、いくつかの検証手順を使用することもできます。
これらすべてのステップの後、トレースとドッキングプロセス7 は、原子モデルde novoを構築するか、既存のモデルをフィッティングすることによって、取得した3D再構築に生物学的意味を与えるのに役立ちます。高解像度が達成されれば、これらのプロセスは、私たちの構造における異なる原子の生物学的構造の位置を教えてくれます。
Scipion8は統合的な方法で最も関連性の高い画像処理パッケージを組み合わせたワークフロー全体を作成することができます。Xmipp9、Relion10、クライオSPARC11、Eman12、Spider13、クライオロ14、Ctffind15、CCP416、Phenix17、およびより多くのパッケージをシピオンに含めることができます。また、統合、相互運用性、トレーサビリティ、再現性を活用して画像処理ワークフロー全体を完全に追跡するために必要なすべてのツールを組み込んでいます8。
Scipionが使用できる最も強力なツールの1つはコンセンサスであり、これは、得られた結果を処理の一つのステップで複数の方法と比較し、より正確な出力を生成するために異なる方法で伝えられる情報の組み合わせを作ることを意味します。これは、パフォーマンスを向上させ、推定パラメータで達成された品質を向上させるのに役立ちます。より単純なワークフローは、コンセンサスメソッドを使用せずに構築できることに注意してください。しかし、我々はこのツールの力を見てきました22,25と、この原稿で提示されたワークフローは、いくつかのステップでそれを使用します。
前の段落で要約されたすべての手順は、次のセクションで詳しく説明し、Scipion を使用して完全なワークフローで組み合わされます。また、生成された出力でより高い合意を達成するためにコンセンサスツールを使用する方法が示されます。そのために、熱帯熱マラリア原虫80Sリボソームのサンプルデータセットが選択されました(EMPIARエントリ:10028、EMDBエントリ:2660)。このデータセットは、FEI FALCON IIカメラで撮影した1.34Åのピクセルサイズ1.34Åのサイズ4096×4096ピクセルの16フレームの600本のムービーによって形成され、EMDBでの報告解像度は3.2Å18である。
現在、cryo-EMは、生物学的サンプルの3D構造を明らかにする重要なツールです。顕微鏡で良いデータを収集すると、利用可能な加工ツールを使用して、研究中の高分子の3D再構成を得ることができます。Cryo-EMデータ処理は、高分子の機能的挙動を理解する鍵であり、創薬においても重要な原子分解能を達成することができます。
Scipionは、最も関連性の高い画像処理パッケージを統合的に組み合わせたワークフロー全体を作成できるソフトウェアで、画像処理ワークフロー全体のトレーサビリティと再現性を助けます。Scipionは、処理を実行するための非常に完全なツールのセットを提供します。しかし、高解像度の再構築を得ることは、取得したデータの品質とこれらのデータの処理方法に完全に依存します。
高解像度の3D再構成を得るためには、最初の要件は、高解像度に構造情報を保存する顕微鏡から良い映画を取得することです。この場合、ワークフローはデータから高精細情報を抽出できません。次に、処理ワークフローが成功すれば、構造に実際に対応するパーティクルを抽出し、3D 空間内でこれらのパーティクルの向きを見つけることができます。ワークフローのいずれかの手順が失敗すると、再構築されたボリュームの品質が低下します。Scipionは、処理手順のどれでも異なるパッケージを使用できるため、データを処理するのに最適なアプローチを見つけるのに役立ちます。さらに、利用可能な多くのパッケージのおかげで、異なる方法の推定出力で合意を見つけることによって精度を高めるコンセンサスツールを使用することができます。また、いくつかの検証ツールの「代表結果」セクションで詳しく説明し、ワークフローの各ステップで正確で不正確な結果を特定する方法、潜在的な問題を検出する方法、および解決方法についても詳しく説明しています。プロトコルにはいくつかのチェックポイントがあり、プロトコルが正しく動作しているかどうかを認識するのに役立ちます。最も関連性の高いのは、ピッキング、2D分類、初期容積推定、3D 線形です。入力を確認したり、別の方法でステップを繰り返したり、コンセンサスを使用したりすることは、Scipionで利用可能なオプションで、問題が発生したときに解決策を見つけるために使用できます。
Cryo-EM分野でのパッケージ統合に関するこれまでのアプローチに関しては、Appion31 は、異なるソフトウェアパッケージの実際の統合を可能にする唯一のアプローチです。しかし、アッピオンは、電子顕微鏡からの画像を自動的に収集するシステムであるLeginon32と緊密に接続されています。Scipionとの主な違いは、データモデルとストレージの結合が少なくて済むということです。このようにして、Scipion で新しいプロトコルを作成するには、Python スクリプトを開発するだけで済みます。ただし、Appion では、開発者はスクリプトを作成し、基になるデータベースを変更する必要があります。要約すると、Scipionはメンテナンスと拡張性を簡素化するために開発されました。
我々は、この原稿で、 熱帯熱マラリア原虫 80Sリボソーム(EMPIARエントリ:10028、EMDBエントリ:2660)の実際のケースデータセットを使用して、Cryo-EM処理のための完全なワークフローを提示しました。ここで説明する手順は、ムービーアライメント、CTF推定、粒子ピッキング、2D分類、初期マップ推定、3D分類、3D 絞り込み、評価、後処理として要約できます。さまざまなパッケージが使用され、コンセンサス ツールがこれらの手順のいくつかで適用されました。最終的な3D再構成された容積は3Åの分解能を達成し、後処理された容積では、宇宙における原子の配置方法を記述するのに役立つアルファヘリックスのようないくつかの二次構造を区別することができる。
この原稿に示すワークフローは、サイピオンを使用して、異なるCryo-EMパッケージを簡単かつ統合的に組み合わせて処理を簡素化し、より信頼性の高い結果を同時に得る方法を示しています。
将来的には、新しい方法やパッケージの開発は成長し続け、Scipionのようなソフトウェアがそれらのすべてを簡単に統合することは、研究者にとってさらに重要になります。コンセンサスアプローチは、異なる基礎を持つ多くの方法が利用可能になるときでさえ、より関連性が高く、Cryo-EMの再建プロセスに含まれるすべてのパラメータのより正確な推定を得るのに役立ちます。追跡と再現性は、完全なワークフローを実行するための共通のフレームワークを持つことのおかげで、研究プロセスの鍵であり、サイピオンで達成することが容易です。
The authors have nothing to disclose.
著者らは、助成金を通じたスペイン科学イノベーション省からの経済的支援を認めたい:PID2019-104757RB-I00/AEI/10.13039/501100011033、グラントを通じて「コモニダ・オートノマ・デ・マドリード」:S2017/BMD-3817、 インスティトゥート・デ・サルド・カルロス3世,PT17/0009/0010(ISCIII-SGEFI/ERDF)、欧州連合(EU)、ホライズン2020助成金:指示 – ULTRA (INFRADEV-03-2016-2017, 提案: 731005), EOSC Life (INFRAEOSC-04-2018, 提案: 824087)、iNEXT – ディスカバリー(提案:871037)、ハイレスセル(ERC – 2018 – SyG、提案:810057)。これらの成果を生み出したプロジェクトは、「ラカイシャ」財団(ID 100010434)からフェローシップの支援を受けました。フェローシップコードはLCF/BQ/DI18/11660021です。このプロジェクトは、マリー・スクウォトフスカ・キュリー交付金第713673日に、欧州連合(EU)のHorizon 2020研究・イノベーションプログラムから資金を受け取りました。著者らは、ランドマークESFRIプロジェクトである「指示」のサポートとリソースの使用を認めている。