Aqui, estabelecemos um novo modelo de rato Sprague-Dawley (SD) de trombose sagital superior (SSS) através de um método de embolização de roscas, e a estabilidade e confiabilidade do modelo foram verificadas.
Os mecanismos que contribuem para o aparecimento natural da trombose venosa cerebral (CVST) são, em sua maioria, desconhecidos, e uma variedade de fatores incontroláveis estão envolvidos no curso da doença, resultando em grandes limitações na pesquisa clínica. Portanto, o estabelecimento de modelos animais CVST estáveis que possam padronizar uma variedade de fatores de confusão incontroláveis têm ajudado a contornar deficiências na pesquisa clínica. Nas últimas décadas, uma variedade de modelos animais CVST foram construídos, mas os resultados baseados nesses modelos têm sido inconsistentes e incompletos. Assim, para explorar melhor os mecanismos fisiociológicos do CVST, é necessário estabelecer um modelo animal novo e altamente compatível, que tenha importante valor prático e significância científica para o diagnóstico e tratamento do CVST. No presente estudo, foi estabelecido um novo modelo de rato Sprague-Dawley (SD) de trombose sagital superior (SSS) por meio de um método de embolização de roscas, e verificou-se a estabilidade e confiabilidade do modelo. Além disso, foram avaliadas alterações no fluxo sanguíneo venoso cerebral em ratos após a formação de CVST. Coletivamente, o modelo SD-rat SSS-thrombosis representa um novo modelo animal CVST que é facilmente estabelecido, minimiza o trauma, produz boa estabilidade e permite controlar com precisão o tempo isquêmico e a localização.
A trombose súbia-síbia cerebral (CVST) é uma doença rara do sistema venoso cerebral que representa apenas 0,5-1,0% de todas as causas de AVC, mas tem uma taxa de ocorrência relativamente alta em crianças e adultos jovens1. Durante a autópsia, verificou-se que o CVST foi a causa de 10% dos óbitos cerebrovasculares2. A trombose pode ocorrer em qualquer parte do sistema venoso intracraniano. O seio sagital superior (SSS) é uma das áreas mais comumente afetadas no CVST e pode envolver múltiplos vasos sanguíneos. Devido à estenose ou à oclusão dos seios venosos, o retorno venoso intracraniano é bloqueado, que muitas vezes é acompanhado pelo aumento da pressão intracraniana3. As manifestações clínicas do CVST são complexas e variam ao longo do tempo; embora haja falta de especificidade dos sintomas, os sintomas mais comuns incluem dor de cabeça (77,2%), convulsões (42,7%) e déficits neurológicos (39,9%). Em casos graves, o coma e até mesmo a morte podem ocorrer4,5. Nos últimos anos, devido à melhoria geral das normas médicas e de saúde e à conscientização da saúde pública, a proporção de fatores de risco relacionados mudou, a proporção de trauma e infecção diminuiu, e a proporção de CVST causada pela gravidez, puerpério, contraceptivos orais e outros motivos aumentou gradualmente5.
Atualmente, a patogênese do CVST ainda não é bem compreendida. Para explorar o CVST em profundidade, é necessária uma pesquisa fisiopatológica adicional. No entanto, a maioria desses métodos de pesquisa são invasivos e, portanto, difíceis de implementar clinicamente. Devido a muitas limitações da pesquisa clínica, os modelos animais têm vantagens insubstituíveis em termos de pesquisa básica e translacional.
A causa do CVST é complexa, pois seu início inicial muitas vezes não é reconhecido e a localização da formação de trombos é altamente variável. Felizmente, os modelos animais podem alcançar um melhor controle desses fatores. Nas últimas décadas, uma variedade de modelos animais CVST foram estabelecidos, e cada modelo tem suas próprias desvantagens. De acordo com diferentes métodos de produção, eles podem ser aproximadamente divididos nas seguintes categorias: o modelo simples de ligadura SSS6,7; o modelo SSS de acelerador de injeção interna8; o modelo de trombose SSS induzida por cloreto férrico9; o modelo de trombose SSS induzido por fotoquímicosmodelo 10; e o auto-feito embolismo-oclusão ModeloSSS 11. No entanto, a maioria desses modelos são incapazes de contornar danos invasivos ao córtex cerebral do animal e não são capazes de controlar com precisão o tempo e a localização isquêmicas. Em alguns modelos, o trombo vai recanalizar espontaneamente; em outros modelos, o SSS torna-se permanentemente ocluído. Além disso, operações complicadas e/ou lesões graves podem afetar achados fisiopatológicos subsequentes nesses modelos.
No presente estudo, um plugue de rosca foi inserido no SSS dos ratos Sprague-Dawley (SD) para estabelecer com sucesso um modelo CVST que minimizasse danos, permitia uma controlabilidade precisa e gerava boa estabilidade. Além disso, imagens de ressonância magnética de animais de pequeno porte (RM) e imagens de fluxo sanguíneo com manchas a laser foram combinadas para verificar a eficácia do modelo. Avaliamos alterações no fluxo sanguíneo cerebral antes e depois do estabelecimento do nosso modelo, bem como avaliamos a estabilidade do nosso modelo, estabelecendo base para estudos mais aprofundados explorando a ocorrência, o desenvolvimento e mecanismos fisiofológicos relacionados da CVST.
Neste estudo, um novo tipo de modelo CVST foi estabelecido com sucesso inserindo um plugue de rosca auto-fabricado no SSS de ratos SD. Além disso, imagens de fluxo sanguíneo com manchas a laser e ressonância magnética de pequenos animais foram combinadas para monitorar alterações no fluxo sanguíneo na superfície cerebral de ratos SD antes e depois da embolização, a fim de padronizar o tempo isquêmico e a localização.
Em 1989, Longa et al. fizeram um modelo de oclusão mca reversí…
The authors have nothing to disclose.
Este estudo foi apoiado pela Grant Scientific Research Foundation for the High-Level Talents, Fujian University of Traditional Chinese Medicine (X2019002-talents).
2 mL syringe | Becton,Dickinson and Company | 301940 | |
brain stereotaxic instrument | Shenzhen RWD Life Technology Co., Ltd | 68025 | |
dissecting microscope | Wuhan SIM Opto-technology Co. | SIM BFI-HR PRO | |
high-speed skull drill | Shenzhen RWD Life Technology Co., Ltd | 78046 | |
laser-speckle blood-flow imaging system | Wuhan SIM Opto-technology Co. | SIM BFI-HR PRO | |
needle holder | Shenzhen RWD Life Technology Co., Ltd | F31022-12 | |
needle thread | Shenzhen RWD Life Technology Co., Ltd | F33303-08 | |
scissors | Shenzhen RWD Life Technology Co., Ltd | S13029-14 | |
silica gel | Heraeus Kulzer | 302785 | |
small animal anesthesia machine | Shenzhen RWD Life Technology Co., Ltd | R540 | |
small-animal MRI | Bruker Medical GmbH | Biospec 94/30 USR | |
tweezers | Shenzhen RWD Life Technology Co., Ltd | F11029-11 | |
vascular forceps | Shenzhen RWD Life Technology Co., Ltd | F22003-09 |