A regeneração muscular esquelética é impulsionada por células-tronco musculares residentes em tecidos, que são prejudicadas em muitas doenças musculares, como distrofia muscular, e isso resulta na incapacidade do músculo de se regenerar. Aqui, descrevemos um protocolo que permite o exame da regeneração muscular em modelos de zebrafish de doença muscular.
O músculo esquelético tem uma notável capacidade de se regenerar após a lesão, que é impulsionada por células-tronco musculares residentes de tecido obrigatório. Após a lesão, a célula-tronco muscular é ativada e sofre proliferação celular para gerar um pool de míobios, que posteriormente se diferenciam para formar novas fibras musculares. Em muitas condições de perda muscular, incluindo distrofia muscular e envelhecimento, esse processo é prejudicado, resultando na incapacidade do músculo de se regenerar. O processo de regeneração muscular em zebrafish é altamente conservado com sistemas de mamíferos fornecendo um excelente sistema para estudar a função e a regeneração das células-tronco musculares, em condições de perda muscular, como distrofia muscular. Aqui, apresentamos um método para examinar a regeneração muscular em modelos de zebrafish de doença muscular. O primeiro passo envolve o uso de uma plataforma de genotipagem que permite a determinação do genótipo das larvas antes de provocar uma lesão. Tendo determinado o genótipo, o músculo é ferido usando uma facada de agulha, seguindo a qual a microscopia de luz polarizadora é usada para determinar a extensão da regeneração muscular. Por isso, fornecemos um gasoduto de alta produtividade que permite o exame da regeneração muscular em modelos de zebrafish de doença muscular.
O músculo esquelético é responsável por 30-50% da massa corporal humana, e não é apenas indispensável para a locomoção, mas também serve como um órgão metabólico e de armazenamento crítico1. Apesar de ser pós-metótico, o músculo esquelético é altamente dinâmico e mantém uma tremenda capacidade regenerativa após lesão. Isso é atribuído à presença de células-tronco residentes em tecidos (também chamadas de células satélites), localizadas sob a lamina basal de miofibers e marcadas pelos fatores de transcrição emparelhados da proteína da caixa 7 (pax7) e/ou proteína de caixa emparelhada 3 (pax3),entre outros2,3. Após a lesão, a célula satélite é ativada e sofre proliferação celular para gerar um pool de míobios, que posteriormente se diferenciam para formar novas fibras musculares. A cascata altamente conservada de sinais pró-regenerativos que regulam a ativação celular por satélite e o reparo muscular robusto é afetada em várias condições, como miopatias e envelhecimento homeostático4,5.
Um grupo tão diversificado de miopatias é a distrofia muscular, caracterizada pelo perda muscular progressiva e degeneração6. Essas doenças são consequência de mutações genéticas em proteínas-chave, incluindo distrofina e laminina-α2 (LAMA2), responsáveis pela fixação das fibras musculares à matriz extracelular7,8. Dado que as proteínas implicadas na distrofia muscular desempenham um papel central na manutenção da estrutura muscular, por muitos anos acreditava-se que uma falha nesse processo era o mecanismo responsável pela patogênese da doença9. No entanto, estudos recentes identificaram defeitos na regulação de células-tronco musculares e subsequente comprometimento na regeneração muscular como segunda base possível para a patologia muscular observada na distrofia muscular10,11. Como tal, mais estudos são necessários para investigar como um comprometimento na função de células-tronco musculares e elementos de nicho associados contribui para a distrofia muscular.
Na última década, o zebrafish (Danio rerio) emergiu como um importante modelo vertebrado para modelagem dedoenças 12. Isso é atribuído ao rápido desenvolvimento externo do embrião de zebrafish, aliado à sua clareza óptica, que permite a visualização direta da formação muscular, crescimento e função. Além disso, não só o desenvolvimento e estrutura do músculo altamente conservado em zebrafish, eles também apresentam um processo altamente conservado de regeneração muscular13. Consequentemente, o zebrafish representa um excelente sistema para estudar a trajetória das doenças musculares e explorar como a regeneração muscular é afetada nele. Para isso, desenvolvemos um método que permite o estudo oportuno da regeneração muscular esquelética em modelos de zebrafish de doença muscular. Este oleoduto de alto rendimento envolve um método para genótipo embriões vivos14, após o qual uma lesão agulha-facada é realizada e a extensão da regeneração muscular é imageada usando microscopia de luz polarizadora. A utilização desta técnica revelará, portanto, a capacidade regenerativa do músculo em modelos de zebrafish de doença muscular.
A regeneração muscular esquelética é impulsionada por células-tronco musculares residentes em tecidos obrigatórios, cuja função é alterada em muitas doenças musculares, como distrofia muscular, impedindo posteriormente o processo de regeneração muscular. Aqui, descrevemos um protocolo de alta produtividade para examinar a regeneração muscular em modelos de zebrafish vivos de doença muscular. O primeiro passo do gasoduto utiliza uma plataforma de genotipagem de embriões14, que é um…
The authors have nothing to disclose.
Gostaríamos de agradecer ao Dr. Alex Fulcher e à Monash Micro Imaging pela assistência com a manutenção e configuração dos microscópios. O Instituto Australiano de Medicina Regenerativa é apoiado por subsídios do Governo do Estado de Victoria e do Governo Australiano. Este trabalho foi financiado por uma concessão de projeto da Associação de Distrofia Muscular (EUA) para P.D.C (628882).
24 well plates | Thermo Fischer | 142475 | |
30 gauge needles | Terumo | NN-3013R | |
90 mm Petri Dishes | Pacific Laboratory Products PT | S9014S20 | |
DNA extraction chips | wFluidx | ZEG chips | |
Embryo genotyping platform | wFluidx | ZEG base unit | Zebrafish Embryo Genotyper |
Glass pipette | Hirschmann | 9260101 | |
Glass plate dish | WPI | FD35-100 | Commonly referred to as FluoroDish |
Incubator | Thermoline Scientific | TEI-43L | |
Plastic pipette | Livingstone | PTP03-01 | |
Polarizing microscope | Abrio | N/A |