Summary

Combining Multiplex Fluorescence In Situ Hybridization with Fluorescent Immunohistochemistry on Fresh Frozen or Fixed Mouse Brain Sections

Published: June 25, 2021
doi:

Summary

This protocol describes a method for combining fluorescence in situ hybridization (FISH) and fluorescence immunohistochemistry (IHC) in both fresh frozen and fixed mouse brain sections, with the goal of achieving multilabel FISH and fluorescence IHC signal. IHC targeted cytoplasmic and membrane attached proteins.

Abstract

Fluorescent in situ hybridization (FISH) is a molecular technique that identifies the presence and spatial distribution of specific RNA transcripts within cells. Neurochemical phenotyping of functionally identified neurons usually requires concurrent labelling with multiple antibodies (targeting protein) using immunohistochemistry (IHC) and optimization of in situ hybridization (targeting RNA), in tandem. A "neurochemical signature" to characterize particular neurons may be achieved however complicating factors include the need to verify FISH and IHC targets before combining the methods, and the limited number of RNAs and proteins that may be targeted simultaneously within the same tissue section.

Here we describe a protocol, using both fresh frozen and fixed mouse brain preparations, which detects multiple mRNAs and proteins in the same brain section using RNAscope FISH followed by fluorescence immunostaining, respectively. We use the combined method to describe the expression pattern of low abundance mRNAs (e.g., galanin receptor 1) and high abundance mRNAs (e.g., glycine transporter 2), in immunohistochemically identified brainstem nuclei.

Key considerations for protein labelling downstream of the FISH assay extend beyond tissue preparation and optimization of FISH probe labelling. For example, we found that antibody binding and labelling specificity can be detrimentally affected by the protease step within the FISH probe assay. Proteases catalyze hydrolytic cleavage of peptide bonds, facilitating FISH probe entry into cells, however they may also digest the protein targeted by the subsequent IHC assay, producing off target binding. The subcellular location of the targeted protein is another factor contributing to IHC success following FISH probe assay. We observed IHC specificity to be retained when the targeted protein is membrane bound, whereas IHC targeting cytoplasmic protein required extensive troubleshooting. Finally, we found handling of slide-mounted fixed frozen tissue more challenging than fresh frozen tissue, however IHC quality was overall better with fixed frozen tissue, when combined with RNAscope.

Introduction

Proteins and mRNAs that neurochemically define subpopulations of neurons are commonly identified with a combination of immunohistochemistry (IHC) and/or in situ hybridization (ISH), respectively. Combining ISH with IHC techniques facilitates the characterization of colocalization patterns unique to functional neurons (neurochemical coding) by maximizing multiplex labelling capacity.

Fluorescent ISH (FISH) methods, including RNAscope, have higher sensitivity and specificity compared to earlier RNA detection methods such as radioactive ISH and non-radioactive chromogenic ISH. FISH enables visualization of single mRNA transcripts as punctate stained spots1. Furthermore, the RNAscope assay allows an increased number of RNA targets to be labeled at a time, using different fluorophore tags. Despite these advantages, technical limitations may affect the number of fluorophores/chromogens that can be used in a single experiment. These include availability of microscope filter sets; such considerations are compounded when neurochemical identification uses combined FISH and IHC, compared to using each technique in isolation, since inherent steps optimal for one method may be detrimental to the other.

Previous application of FISH combined with IHC has demonstrated the expression of specific cellular targets in human B-cell lymphomas2, chick embryos3, zebrafish embryos4, mouse retina5 and mouse inner ear cells6. In these studies, tissue preparation was either formalin-fixed paraffin embedded (FFPE)2,3,5 or fresh whole mount4,6. Other studies applied chromogenic RNAscope on fixed mouse and rat brain preparations7,8,9. In particular, Baleriola et al.8 described two different tissue preparations for combined ISH-IHC; fixed mouse brain sections and FFPE human brain sections. In a recent publication, we combined FISH and fluorescent IHC on fresh frozen sections, to simultaneously visualize low abundance mRNA (galanin receptor 1, GalR1), high abundance mRNA (glycine transporter 2, GlyT2) and vesicular acetylcholine transporter (vAChT) protein10 in the brainstem reticular formation.

The nucleus of the solitary tract (NTS) is a major brain region involved in autonomic function. Located in the hindbrain, this heterogeneous population of neurons receives and integrates a vast number of autonomic signals, including those that regulate breathing. The NTS harbors several neuronal populations, which may be phenotypically characterized by the expression pattern of mRNA targets including GalR1 and GlyT2 and protein markers for the enzyme tyrosine hydroxylase (TH) and the transcription factor Paired-like homeobox 2b (Phox2b).

The RNAscope proprietor recommends fresh frozen tissue preparations, but tissue prepared by whole animal transcardial perfusion fixation, along with long term cryoprotection (storage at -20 °C) of fixed frozen tissue sections, is common in many laboratories. Hence, we sought to establish protocols for FISH in combination with IHC using fresh frozen and fixed frozen tissue preparations. Here, we provide for fresh frozen and fixed frozen brain sections: (1) a protocol for combined FISH and fluorescent IHC (2) a description of the quality of mRNA and protein labelling produced, when utilizing each preparation (3) a description of the expression of GalR1 and GlyT2 in the NTS.

Our study revealed that, when combined with RNAscope methodology, IHC success varied in fresh frozen and fixed frozen preparations and, was dependent upon localization of the target proteins within the cell. In our hands, membrane bound protein labelling was always successful. In contrast, IHC for cytoplasmic protein required troubleshooting even in cases where the cytoplasmic protein was overexpressed in a transgenic animal (Phox2b-GFP)11. Finally, while GalR1 is expressed in non-catecholaminergic neurons in the NTS, GlyT2 expression is absent in the NTS.

Protocol

A summary of tissue pre-processing steps may be found in Figure 1. All procedures were carried out in compliance with the Animal Care and Ethics Committee of the University of New South Wales in accordance with the guidelines for the use and care of animals for scientific purposes (Australian National Health and Medical Research Council). 1. Sample preparation of fresh frozen brain tissue Transcardial Perfusion Prepare heparinized (2500 U/L…

Representative Results

Here, we outline a method for combining multiplex FISH with fluorescent IHC to localize mRNA expression for GalR1 and GlyT2 using fresh-frozen and paraformaldehyde fixed tissues respectively in the mouse NTS. A pipeline of the tissue processing, FISH and IHC procedures described in the methods is displayed in Figure 1 and Figure 2. Table 1 provides a summary of the FISH probe and antibody combinations used in each figure. <p class="jove_cont…

Discussion

In the neurosciences, FISH and IHC are routinely used to investigate the spatial organization and functional significance of mRNA or proteins within neuronal subpopulations. The protocol described in this study enhances the capacity for simultaneous detection of mRNAs and proteins in brain sections. Our combined multiplex FISH-IHC assay enabled phenotypic identification of distinct neuronal subpopulations in the NTS in both fresh frozen and fixed brain preparations. FISH-IHC in fixed frozen tissue preparations produced r…

Acknowledgements

This work was funded by Australian Research Council Discovery Project grant DP180101890 and Rebecca L Cooper Medical Research Foundation project grant PG2018110

Materials

ANIMALS
C57BL/6 mouse Australian BioResources, Moss Vale MGI: 2159769
Phox2b-eGFP mouse Australian BioResources, Moss Vale MGI: 5776545
REAGENTS
Cyanoacrylate Loctite
Ethylene Glycol Sigma-Aldrich 324558
Heparin-Sodium Clifford Hallam Healthcare 1070760 Consult local veterinary supplier or pharmacy.
Lethabarb (Sodium Pentabarbitol) Euthanasia Injection Virbac (Australia) Pty Ltd N/A Consult a veterinarian for local pharmaceutical regulations regarding Sodium Pentabarbitol
Molecular grade agarose powder Sigma Aldrich 5077
OCT Compound, 118mL Scigen Ltd 4586
Paraformaldehyde, prilled, 95% Sigma-Aldrich 441244-1KG
Polyvinylpyrrolidone, average mol wt 40,000  (PVP-40) Sigma-Aldrich PVP40
ProLong Gold Antifade Mountant Invitrogen P36930 With or without DAPI
RNAscope Multiplex Fluorescent Reagent Kit (up to 3-plex capability) Advanced Cell Diagnostics, Inc. (ACD Bio) ADV320850 Includes 50x Wash buffer and Protease III
RNase Away Thermo-Fisher Scientific 7003
Tris(hydroxymethyl)aminomethane Sigma-Aldrich 252859
Tween-20, for molecular biology Sigma-Aldrich P9416
EQUIPMENT
Benchtop incubator Thermoline scientific micro incubator Model: TEI-13G
Brain Matrix, Mouse, 30g Adult, Coronal, 1mm Ted Pella 15050
Cryostat Leica CM1950
Drawing-up needle (23 inch gauge) BD 0288U07
Hydrophobic Barrier Pen Vector labs H-4000
Kimtech Science Kimwipes Delicate Task Wipes Kimberley Clark Professional 34120
Olympus BX51 Olympus BX-51
Peristaltic pump Coleparmer Masterflex L/S Series 
Retiga 2000R Digital Camera QImaging RET-2000R-F-CLR colour camera
SuperFrost Plus Glass Slides (White) Thermo-Fisher Scientific 4951PLUS4
Vibrating Microtome (Vibratome) Leica VT1200S
Whatman qualitative filter paper, Grade 1, 110 mm diameter Merck WHA1001110
SOFTWARES
CorelDRAW  Corel Corporation Version 7
FIJI (ImageJ Distribution) Open Source/GNU General Public Licence (GPL) N/A ImageJ 2.x: Rueden, C. T.; Schindelin, J. & Hiner, M. C. et al. (2017), "ImageJ2: ImageJ for the next generation of scientific image data", BMC Bioinformatics 18:529, PMID 29187165, doi:10.1186/s12859-017-1934-z   and Fiji: Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al. (2012), "Fiji: an open-source platform for biological-image analysis", Nature methods 9(7): 676-682, PMID 22743772, doi:10.1038/nmeth.2019 
PRIMARY ANTIBODIES
Anti-Tyrosine Hydroxylase Antibody Millipore Sigma AB1542 Sheep polyclonal (1:1000 dilution), RRID: AB_90755
Anti-Tyrosine Hydroxylase Antibody, clone LNC1 Millipore Sigma MAB318 Mouse monoclonal (1:1000 dilution), RRID: AB_2201528
Anti-Vesicular Acetylcholine Transporter (VAchT) Antibody Sigma-Aldrich ABN100 Goat polyclonal (1:1000 dilution), RRID: AB_2630394
GFP Antibody Novus Biologicals NB600-308 Rabbit polyclonal (1:1000 dilution), RRID: AB_10003058
Phox2b Antibody (B-11) Santa Cruz Biotechnology sc-376997 Mouse monoclonal (1:1000 dilution), RRID: AB_2813765
SECONDARY ANTIBODIES
Alexa Fluor 488 AffiniPure Donkey Anti-Rabbit IgG (H+L) (min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, Ms, Rat, Shp Sr Prot)  Jackson ImmunoResearch 711-545-152 Donkey anti-Rabbit (1:400 dilution), RRID: AB_2313584
AMCA AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 713-155-147 Donkey anti-Sheep (1:400 dilution), RRID: AB_AB_2340725
Cy5 AffiniPure Donkey Anti-Goat IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 705-175-147 Donkey anti-Goat (1:400 dilution), RRID: AB_2340415
Cy5 AffiniPure Donkey Anti-Mouse IgG (H+L) (min X Bov, Ck, Gt, GP, Sy Hms, Hrs, Hu, Rb, Rat, Shp Sr Prot) Jackson ImmunoResearch 715-175-151 Donkey anti-Mouse (1:400 dilution), RRID: AB_2619678
Cy5 AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck, GP, Sy Hms, Hrs, Hu, Ms, Rb, Rat Sr Prot) Jackson ImmunoResearch 713-175-147 Donkey anti-Sheep (1:400 dilution), RRID: AB_2340730
RNASCOPE PROBES
Galanin Receptor 1 oligonucleotide probe ACDBio 448821-C1 targets bp 482 – 1669 (Genebank ref: NM_008082.2)
Glycine transporter 2 oligonucleotide probe ACDBio 409741-C3 targets bp 925 – 2153 (Genebank ref: NM_148931.3)
Phox2b oligonucleotide probe ACDBio 407861-C2 targets bp 1617 – 2790 (Genebank ref: NM_008888.3)

Referências

  1. Wang, F., et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. Journal of Molecular Diagnostics. 14 (1), 22-29 (2012).
  2. Annese, T., et al. RNAscope dual ISH-IHC technology to study angiogenesis in diffuse large B-cell lymphomas. Histochemistry and Cell Biology. 153 (3), 185-192 (2020).
  3. Morrison, J. A., McKinney, M. C., Kulesa, P. M. Resolving in vivo gene expression during collective cell migration using an integrated RNAscope, immunohistochemistry and tissue clearing method. Mechanisms of Development. 148, 100-106 (2017).
  4. Gross-Thebing, T., Paksa, A., Raz, E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biology. 12, 55 (2014).
  5. Stempel, A. J., Morgans, C. W., Stout, J. T., Appukuttan, B. Simultaneous visualization and cell-specific confirmation of RNA and protein in the mouse retina. Molecular Vision. 20, 1366-1373 (2014).
  6. Kersigo, J., et al. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA. Cell and Tissue Research. 374 (2), 251-262 (2018).
  7. Grabinski, T. M., Kneynsberg, A., Manfredsson, F. P., Kanaan, N. M. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS One. 10 (3), 0120120 (2015).
  8. Baleriola, J., Jean, Y., Troy, C., Hengst, U. Detection of axonally localized mRNAs in brain sections using high-resolution in situ hybridization. Journal of Visualized Experiments. (100), e52799 (2015).
  9. Fe Lanfranco, M., Loane, D. J., Mocchetti, I., Burns, M. P., Villapol, S. Combination of fluorescent in situ hybridization (FISH) and immunofluorescence imaging for detection of cytokine expression in microglia/macrophage cells. Bio-Protocol. 7 (22), (2017).
  10. Dereli, A. S., Yaseen, Z., Carrive, P., Kumar, N. N. Adaptation of respiratory-related brain regions to long-term hypercapnia: focus on neuropeptides in the RTN. Frontiers in Neuroscience. 13, 1343 (2019).
  11. Lazarenko, R. M., et al. Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b-EGFP transgenic mice. Journal of Comparative Neurology. 517 (1), 69-86 (2009).
  12. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  13. Paxinos, G., Franklin, K. B. . The mouse brain in stereotaxic coordinates. , (2004).
  14. Abercrombie, M. Estimation of nuclear population from microtome sections. Anatomical Records. 94, 239-247 (1946).
  15. Kerr, N., et al. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Molecular and Cellular Neurosciences. 68, 258-271 (2015).
  16. Kachidian, P., Pickel, V. M. Localization of tyrosine hydroxylase in neuronal targets and efferents of the area postrema in the nucleus tractus solitarii of the rat. Journal of Comparative Neurology. 329 (3), 337-353 (1993).
  17. Stornetta, R. L., et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. Journal of Neuroscience. 26 (40), 10305-10314 (2006).
  18. Gilmor, M. L., et al. Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. Journal of Neuroscience. 16 (7), 2179-2190 (1996).
  19. Fisher, J. M., Sossin, W., Newcomb, R., Scheller, R. H. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell. 54 (6), 813-822 (1988).
  20. Towle, A. C., Lauder, J. M., Joh, T. H. Optimization of tyrosine-hydroxylase immunocytochemistry in paraffin sections using pretreatment with proteolytic-enzymes. Journal of Histochemistry and Cytochemistry. 32 (7), 766-770 (1984).
  21. Biancardi, V., et al. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. Journal of Comparative Neurology. 529 (4), 853-884 (2021).
  22. Matthews, D. W., et al. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking. Journal of Comparative Neurology. 523 (6), 921-942 (2015).
  23. Ramos-Vara, J. A. Principles and methods of immunohistochemistry. Methods in Molecular Biology. 1641, 115-128 (2017).
  24. Shi, S. R., Key, M. E., Kalra, K. L. Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. Journal of Histochemistry and Cytochemistry. 39 (6), 741-748 (1991).
  25. Yamashita, S., Katsumata, O. Heat-induced antigen retrieval in immunohistochemistry: mechanisms and applications. Methods in Molecular Biology. 1560, 147-161 (2017).
  26. Yamashita, S., Okada, Y. Mechanisms of heat-induced antigen retrieval: analyses in vitro employing SDS-PAGE and immunohistochemistry. Journal of Histochemistry and Cytochemistry. 53 (1), 13-21 (2005).
  27. Yamashita, S. Heat-induced antigen retrieval: mechanisms and application to histochemistry. Progress in Histochemistry and Cytochemistry. 41 (3), 141-200 (2007).
check_url/pt/61709?article_type=t

Play Video

Citar este artigo
Dereli, A. S., Bailey, E. J., Kumar, N. N. Combining Multiplex Fluorescence In Situ Hybridization with Fluorescent Immunohistochemistry on Fresh Frozen or Fixed Mouse Brain Sections. J. Vis. Exp. (172), e61709, doi:10.3791/61709 (2021).

View Video