Summary

牛早期蚁卵泡卵母细胞的体外培养策略

Published: July 08, 2020
doi:

Summary

我们描述了在发育的早期阶段从卵巢卵泡分离生长的卵母细胞的过程,以及建立体外培养系统,该系统可以支持生长和分化,一次,一次,一次,一个发育阶段。

Abstract

成熟、可受精的卵母细胞的有限储备是哺乳动物辅助生殖成功的主要障碍。考虑到在生殖寿命期间,卵巢成熟和排卵中只有约1%的卵母细胞,已开发出若干技术,以增加卵巢储备对越来越多的非卵巢卵泡种群的利用。这些技术允许对生育保护、牲畜选择方案以及濒危物种的保护进行干预。然而,卵巢储备的巨大潜力在很大程度上仍未开发。例如,在奶牛中,已经尝试在特定的发育阶段支持卵母细胞的体外培养,但尚未制定有效和可靠的方案。在这里,我们描述了一个培养系统,它再现了相应卵泡阶段的生理条件,被定义为从牛早期蚁卵泡中收集到完全生长的卵母细胞,与体内的中蚂蚁卵泡相对应。激素和磷酸二酯酶3抑制剂的组合被用来防止不合时宜的美的恢复,并指导卵母细胞的分化。

Introduction

在生殖寿命期间,卵巢成熟中存在的卵母细胞中,只有极小部分在排卵管中排卵,并可用于受精和发育成可行的胚胎1。另一方面,卵巢内大多数卵母细胞都经过卵巢,从不排卵。体外胚胎生产(IVP)技术试图增加卵巢储备2,3,的利用。迄今为止,这些技术允许对生育保护、牲畜选择方案以及保护濒危物种进行干预。然而,大多数协议使用已基本完成在蚁卵巢卵泡内生长阶段的卵母细胞,因此被称为完全生长的卵母细胞。在广泛采用 IVP 技术的牛中,完全生长的卵母细胞的最终直径约为 120 μm,从直径为 2 至 8 mm 的卵泡(中等蚂蚁卵泡)1 中采集。与卵泡分离后,这种卵母细胞在体外成熟和受精。然后,酶被培养到囊肿阶段,或转移到接受者或冷冻保存。在牛和许多其他物种中,尽管 IVP 提供了潜力,但每头牛的体外胚胎数量过去 40 年并没有大有改善。这部分是由于在给定时间填充卵巢的完全生长的卵母细胞数量有限,可以检索并接受标准 IVP 技术4、,56。

封闭在早期蚁卵泡内的卵母细胞,即直径小于2毫米的卵泡,是生育保全计划7中的潜在来源,因为卵巢中大约含有比中蚂蚁8多10倍的早期蚁卵。然而,这些卵母细胞仍处于生长阶段,尚未达到完全生长阶段9。因此,他们仍然具有转录活性,产生mRNA,将储存为以后的发展步骤,尚未经历所需的所有分化过程,赋予卵母细胞的能力,自发地恢复和完成美病我曾经从卵泡舱10,11,分离。因此,它们不能直接提交到标准体外成熟 (IVM) 协议,但它们需要额外的培养期,以便它们能够完成生长阶段并正确区分。

从生长阶段到完全生长阶段的过渡,在牛中,当毛囊从早期的蚁体发展到中蚁体阶段时,是卵母细胞发育的关键步骤之一。在牛中,多项研究试图在体,,,2、12、13、14、15、16、17、18、192,12,13,1416,1718中重新概括这些事件15然而,迄今尚未制定可靠的议定书,只报告了有限的成功。根据先前的研究20,这些生长的卵母细胞构成一个同质种群。除了转录活性外,它们的染色质还分散在细菌囊泡(GV)中,其配置名为GV02,21。,21相反,从中等蚂蚁卵泡中获得的完全生长的卵母细胞的种群是更异质的,这种条件由不同程度的染色质压实(GV1、GV2和GV3)所反映,可以观察到20。其中,此前的数据表明,GV2和GV3卵母细胞总体具有较好的品质和较高的胚胎发育能力20、21、22、23、24。20,21,22,23,24

从上述观察开始,我们在此描述了一个5天长的卵母细胞培养系统(L-IVCO),它允许从早期的蚁卵泡中分离出分离为积细胞-卵母细胞复合物(COCs)的卵母细胞。这种培养策略是从我们实验室进行的10年长期研究演变而来的,其基础是先前开发的体外卵母细胞培养(IVCO)2,早产系统23,25,25和卵母细胞培养期间的锌补充。卵泡刺激激素(FSH)和磷酸二酯酶-3(PDE3)抑制剂的组合,能够增强积糖-卵母细胞传播2,防止不合时宜的美异恢复2,并支持卵母细胞生长2被使用。

Protocol

在当地屠宰场(INALCA S.p.A.,奥斯佩达莱托·洛迪迪亚诺,LO,IT 2270M CE,意大利)回收的4至8岁的荷尔斯泰因奶牛。 1. 媒体准备 注:所有介质在使用前必须至少准备四小时。碳酸氢钠缓冲介质在38.5°C和5%CO2空气中孵育,最大湿度。2HEPES 缓冲介质在恒温烤箱中保持在 38.5 °C。 卵母细胞(L-IVCO)介质的长体外培养 准备15 mL的基本培养基?…

Representative Results

在L-IVCO结束时,COC的形态变化,根据积液细胞的外观确定了4个类,如图2所示。根据选择健康COCs11、26、27的通常形态标准,1、2和3类被判定为健康,而4类则表现出明显的退化迹象,如卵母细胞周围没有完整的积细胞层,被认为严重受损,不适合在未来的 IVP 设置中接受下游程序。11,26,27总的来说,对5个生…

Discussion

在这里,我们描述了一个培养卵母细胞的培养系统,通过支持卵母细胞的生存能力和防止卵母细胞的恢复,促进卵母细胞发育5天。后一个方面是最重要的,让持续生长和分化是必要的,使卵母细胞与小鼠和胚胎发育能力2,2,20,否则将阻止过早恢复的美的分裂。

在开发这种培养系统时,我们考虑了卵泡中生理生长和分化的几个特征…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了伦巴第地区PSR INNOVA n.201801061529和联伊特派团n.PSR 2019_DIP_027_ALUCI_01

Materials

4-well dishes Nunclon 179830
96-well dish Becton Dickinson Biosciences 356649 BioCoat™ Collagen I
Bovine Serum Albumin (Fatty acid free) Sigma A8806
Bovine Serum Albumin (Fraction V) Sigma A3311
Cell culture water Sigma W3500
Cilostamide Sigma C7971
Cysteamine Sigma M9768
Digital camera Nikon Corp Camera DS-5M
Disodium phosphate Sigma S5136
Estradiol Sigma E2758
Glutamax Supplement Thermo Fisher Scientific 35050061
Gonal F Merck Serono
Heparin Sigma H3149
Hepes Sigma H3784
Vacuum pump Cook-IVF
Incubator Sanyo
Kanamycin sulfate from Streptomyces kanamyceticus Sigma K1377
Medium 199 Sigma M3769 Powder for hepes-buffered TCM199
Medium 199 Sigma M2520 Powder for M199-D
Microscope Nikon Corp Nikon Diaphot
Microscope Nikon Corp Eclipse E 600
Monopotassium phosphate Sigma P5655
Paraformaldehyde Sigma 158127
Penicilin Sigma P3032
Phenol Red Sigma P5530
Polyvinyl alcohol Sigma P8137
Polyvinylpyrrolidone Sigma P5288 360k molecular weight
Potassium chloride Sigma P5405
Progesterone Sigma P8783
Sodium bicarbonate Sigma S5761
Sodium choride Sigma P5886
Sodium pyruvate Sigma P4562
Streptomycin Sigma S9137
Testosterone Sigma 86500
Triton X Sigma T9284
Vectashield with DAPI Vector Laboratories H1200
Water Sigma W3500
Zinc sulfate heptahydrate Sigma Z0251

Referências

  1. Lonergan, P., Fair, T. Maturation of Oocytes in Vitro. Annual Review of Animal Biosciences. 4, 255-268 (2016).
  2. Luciano, A. M., Franciosi, F., Modina, S. C., Lodde, V. Gap junction-mediated communications regulate chromatin remodeling during bovine oocyte growth and differentiation through cAMP-dependent mechanism(s). Biology of Reproduction. 85 (6), 1252-1259 (2011).
  3. McLaughlin, M., Telfer, E. E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 139 (6), 971-978 (2010).
  4. Galli, C. Achievements and unmet promises of assisted reproduction technologies in large animals: a per-sonal perspective. Animal Reproduction. 14 (3), 614-621 (2017).
  5. Luciano, A. M., Sirard, M. A. Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biology of Reproduction. 98 (2), 162-169 (2018).
  6. Lonergan, P., Fair, T. In vitro-produced bovine embryos: dealing with the warts. Theriogenology. 69 (1), 17-22 (2008).
  7. Clement, M. D. F., Dalbies-Tran, R., Estienne, A., Fabre, S., Mansanet, C., Monget, P. The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link. Biology of Reproduction. 90 (4), 85 (2014).
  8. Lussier, J. G., Matton, P., Dufour, J. J. Growth rates of follicles in the ovary of the cow. Journal of Reproduction and Fertility. 81 (2), 301-307 (1987).
  9. Fair, T., Hulshof, S. C., Hyttel, P., Greve, T., Boland, M. Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anatomy and Embryology (Berlin). 195 (4), 327-336 (1997).
  10. Pavlok, A., Lucas-Hahn, A., Niemann, H. Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Molecular Reproduction and Development. 31 (1), 63-67 (1992).
  11. Blondin, P., Sirard, M. A. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development. 41 (1), 54-62 (1995).
  12. Harada, M., et al. Bovine oocytes from early antral follicles grow to meiotic competence in vitro: effect of FSH and hypoxanthine. Theriogenology. 48 (5), 743-755 (1997).
  13. Hirao, Y., et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biology of Reproduction. 70 (1), 83-91 (2004).
  14. Alm, H., Katska-Ksiazkiewicz, L., Rynska, B., Tuchscherer, A. Survival and meiotic competence of bovine oocytes originating from early antral ovarian follicles. Theriogenology. 65 (7), 1422-1434 (2006).
  15. Taketsuru, H., et al. Bovine oocytes in secondary follicles grow in medium containing bovine plasma after vitrification. Journal of Reproduction and Development. 57 (1), 99-106 (2011).
  16. Endo, M., et al. Estradiol supports in vitro development of bovine early antral follicles. Reproduction. 145 (1), 85-96 (2013).
  17. Makita, M., Miyano, T. Steroid hormones promote bovine oocyte growth and connection with granulosa cells. Theriogenology. 82 (4), 605-612 (2014).
  18. Yamamoto, K., et al. Development to live young from bovine small oocytes after growth, maturation and fertilization in vitro. Theriogenology. 52 (1), 81-89 (1999).
  19. Alam, M. H., Lee, J., Miyano, T. Inhibition of PDE3A sustains meiotic arrest and gap junction of bovine growing oocytes in in vitro growth culture. Theriogenology. 118, 110-118 (2018).
  20. Lodde, V., Modina, S., Galbusera, C., Franciosi, F., Luciano, A. M. Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Molecular Reproduction and Development. 74 (6), 740-749 (2007).
  21. Lodde, V., et al. Oocyte morphology and transcriptional silencing in relation to chromatin remodeling during the final phases of bovine oocyte growth. Molecular Reproduction and Development. 75 (5), 915-924 (2008).
  22. Dieci, C., et al. Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production. Molecular Human Reproduction. 22 (12), 882-897 (2016).
  23. Soares, A. C. S., et al. Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte-cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reproduction, Fertililty and Development. 29 (11), 2217-2224 (2017).
  24. Soares, A. C. S., et al. Characterization and control of oocyte large-scale chromatin configuration in different cattle breeds. Theriogenology. 141, 146-152 (2020).
  25. Franciosi, F., et al. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biology of Reproduction. 91 (3), 61 (2014).
  26. Luciano, A. M., et al. Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization. Molecular Reproduction and Development. 54 (1), 86-91 (1999).
  27. Bilodeau-Goeseels, S., Panich, P. Effects of oocyte quality on development and transcriptional activity in early bovine embryos. Animal Reproduction Science. 71 (3-4), 143-155 (2002).
  28. Dieci, C., et al. The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biology of Reproduction. 89 (3), 68 (2013).
  29. Shu, Y. M., et al. Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes. Human Reproduction. 23 (3), 504-513 (2008).
  30. Lodde, V., et al. Zinc supports transcription and improves meiotic competence of growing bovine oocytes. Reproduction. 159 (6), 679-691 (2020).
  31. Henderson, K. M., McNeilly, A. S., Swanston, I. A. Gonadotrophin and steroid concentrations in bovine follicular fluid and their relationship to follicle size. Journal of Reproduction and Fertility. 65 (2), 467-473 (1982).
  32. Kruip, T. A., Dieleman, S. J. Steroid hormone concentrations in the fluid of bovine follicles relative to size, quality and stage of the oestrus cycle. Theriogenology. 24 (4), 395-408 (1985).
  33. Sakaguchi, K., et al. Relationships between the antral follicle count, steroidogenesis, and secretion of follicle-stimulating hormone and anti-Mullerian hormone during follicular growth in cattle. Reproductive Biology and Endocrinology. 17 (1), 88 (2019).
  34. Makita, M., Miyano, T. Androgens promote the acquisition of maturation competence in bovine oocytes. Journal of Reproduction and Development. 61 (3), 211-217 (2015).
  35. Walters, K. A., Allan, C. M., Handelsman, D. J. Androgen actions and the ovary. Biology of Reproduction. 78 (3), 380-389 (2008).
  36. Luciano, A. M., Pappalardo, A., Ray, C., Peluso, J. J. Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biology of Reproduction. 51 (4), 646-654 (1994).
  37. Gordon, I. . Laboratory Production of Cattle Embryos, 2nd edn. , (2003).
  38. Telfer, E. E., McLaughlin, M., Ding, C., Thong, K. J. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Human Reproduction. 23 (5), 1151-1158 (2008).
  39. McLaughlin, M., Albertini, D. F., Wallace, W. H. B., Anderson, R. A., Telfer, E. E. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Molecular Human Reproduction. 24 (3), 135-142 (2018).
  40. Fair, T., Hyttel, P., Greve, T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Molecular Reproduction and Development. 42 (4), 437-442 (1995).

Play Video

Citar este artigo
Barros, R. G., Lodde, V., Franciosi, F., Luciano, A. M. In Vitro Culture Strategy for Oocytes from Early Antral Follicle in Cattle. J. Vis. Exp. (161), e61625, doi:10.3791/61625 (2020).

View Video