Descriviamo qui una semplice analisi dell’eterogeneità del compartimento delle cellule B immunitarie murine nel peritoneo, nella milza e nei tessuti del midollo osseo mediante citometria a flusso. Il protocollo può essere adattato ed esteso ad altri tessuti di topo.
Studi approfonditi hanno caratterizzato lo sviluppo e la differenziazione delle cellule B murine negli organi linfoidi secondari. Gli anticorpi secreti dalle cellule B sono stati isolati e sviluppati in terapie ben consolidate. La convalida dello sviluppo delle cellule B murine, nel contesto di topi autoimmuni o in topi con sistema immunitario modificato, è una componente cruciale dello sviluppo o della sperimentazione di agenti terapeutici nei topi ed è un uso appropriato della citometria a flusso. Parametri citometrici a flusso di cellule B ben consolidati possono essere utilizzati per valutare lo sviluppo delle cellule B nel peritoneo murino, nel midollo osseo e nella milza, ma è necessario rispettare una serie di migliori pratiche. Inoltre, l’analisi citometrica a flusso dei compartimenti delle cellule B dovrebbe anche integrare ulteriori letture dello sviluppo delle cellule B. I dati generati utilizzando questa tecnica possono migliorare la nostra comprensione di modelli murini selvatici, autoimmuni e di topi umanizzati che possono essere utilizzati per generare anticorpi o molecole simili a anticorpi come terapeutici.
Gli anticorpi monoclonali sono diventati sempre più la terapia di scelta per molte malattie umane in quanto entrano a far parte della medicina tradizionale1,2. Abbiamo precedentemente descritto topi geneticamente modificati che producono in modo efficiente anticorpi che ospitano regioni variabili completamente umane con costanti IgH di topo3,4. Più recentemente, abbiamo descritto topi geneticamente modificati che producono molecole simili a anticorpi che hanno un legame antigene distinto5. Gli anticorpi sono secreti dalle cellule B e costituiscono la base dell’immunità umorale adattativa. Esistono due tipi distinti di cellule B, B-1 e B-2. Nei mammiferi, le cellule B-1 hanno origine nel fegato fetale e sono arricchite nei tessuti mucosi e nelle cavità pleurica e peritoneale dopo la nascita, mentre le cellule B-2 hanno origine nel fegato fetale prima della nascita e successivamente nel midollo osseo (BM). Le cellule B-2 sono arricchite negli organi linfoidi secondari tra cui la milza e il sangue6,7,8. Nel BM, i progenitori ematopoietici B-2 iniziano a differenziarsi in cellule pro-B all’inizio del riarrangiamento della catena pesante Ig mu9,10. Il riarrangiamento riuscito della catena pesante Ig e il suo assemblaggio nel recettore delle cellule pre-B (pre-BCR), insieme alla segnalazione e all’espansione proliferativa, porta alla differenziazione in cellule pre-B. Dopo che le cellule pre-B riorganizzano le loro catene leggere Ig kappa (Igκ), o se improduttive, Ig lambda (Igλ), si accoppiano con μ catena pesante, con conseguente espressione superficiale di IgM BCR. È importante sottolineare che l’espressione superficiale delle IgM è nota per essere ridotta in condizioni di autoreattività, contribuendo così all’autotolleranza nelle cellule B funzionalmente non reattive o anergiche11,12. Le cellule B immature entrano quindi in una fase di transizione, dove iniziano a co-esprimere IgD e migrano dal BM alla milza. Nella milza, l’espressione di IgD aumenta ulteriormente e le cellule maturano in un secondo stadio di cellule B di transizione, seguito dal completamento del loro stato di maturazione e dallo sviluppo in cellule della zona marginale (MZ) o follicolari (Fol)13,14,15. Nei topi adulti, in un ambiente non malato, il numero di cellule B mature rimane costante nonostante 10-20 milioni di cellule B immature vengano generate quotidianamente nel BM. Di questi, solo il tre per cento entra nel pool di cellule B mature. La dimensione del compartimento periferico delle cellule B è limitata dalla morte cellulare, dovuta in parte a diversi fattori tra cui l’auto-reattività e la maturazione incompleta16,17,18. L’analisi citometrica a flusso è stata ampiamente utilizzata per caratterizzare ed enumerare molti sottocompartimenti delle cellule immunitarie negli esseri umani e nei topi. Mentre ci sono alcune somiglianze tra compartimenti di cellule B umane e murine, questo protocollo si applica solo all’analisi delle cellule B murine. Questo protocollo è stato sviluppato con lo scopo di fenotipizzare topi geneticamente modificati, per determinare se la manipolazione genetica avrebbe alterato lo sviluppo delle cellule B. La citometria a flusso è stata anche molto popolare in molte applicazioni aggiuntive, tra cui la misurazione dell’attivazione cellulare, della funzione, della proliferazione, dell’analisi del ciclo, dell’analisi del contenuto del DNA, dell’apoptosi e dello smistamento cellulare 19,20.
La citometria a flusso è lo strumento di scelta per caratterizzare vari compartimenti linfocitari nei topi e nell’uomo, anche in organi complessi come la milza, il BM e il sangue. Grazie ai reagenti anticorpali specifici del topo ampiamente disponibili per la citometria a flusso, questa tecnica può essere utilizzata per studiare non solo le proteine di superficie cellulare, ma anche le fosfoproteine intracellulari e le citochine, nonché le letture funzionali21. Qui dimostriamo come i reagenti per citometria a flusso possono essere utilizzati per identificare i sottoinsiemi di cellule B man mano che maturano e si differenziano negli organi linfoidi secondari. Dopo l’ottimizzazione delle condizioni di colorazione, la gestione dei campioni, la corretta configurazione dello strumento e l’acquisizione dei dati e, infine, l’analisi dei dati, è possibile utilizzare un protocollo per l’analisi citometrica a flusso completa del compartimento delle cellule B nei topi. Tale analisi completa si basa su una nomenclatura vecchia di decenni ideata da Hardy e colleghi, in cui lo sviluppo di cellule BM B-2 può essere diviso in diverse frazioni (Frazione) a seconda della loro espressione di B220, CD43, BP-1, CD24, IgM e IgD22. Hardy et al., hanno dimostrato che le cellule B220+ CD43 BM B possono essere suddivise in quattro sottoinsiemi (Frazione A-C’) sulla base dell’espressione DI BP-1 e CD24 (30F1), mentre le cellule B220+ CD43-(dim to neg) possono essere risolte in tre sottoinsiemi (Frazione D-F) basati sull’espressione differenziale di IgD e IgM23 di superficie. La frazione A (cellule pre-pro-B) è definita come BP-1– CD24 (30F1)–, la frazione B (prime cellule pro-B) è definita come BP-1– CD24 (30F1)+, la frazione C (cellule pro-B tardive) è definita come BP-1+ CD24 (30F1)+, e la frazione C’ (prime cellule pre-B) è definita come BP-1+ e CD24high. Inoltre, la Frazione D (cellule pre-B) è definita come B220+ CD43– IgM– B, e la Frazione E (cellule B di nuova generazione, combinazione di cellule immature e transitorie) è definita come B220+ CD43– IgM+ B cells e la Frazione F (cellule B mature, a ricircolo) è definita come B220high CD43– IgM+ B cells. Al contrario, la maggior parte delle cellule B naïve presenti nella milza può essere suddivisa in cellule B mature (B220+ CD93–) e cellule transizionali (T1, T2, T3) a seconda dell’espressione di CD93, CD23 e IgM. Le cellule B mature possono essere risolte in zone marginali e sottoinsiemi follicolari basati sull’espressione di IgM e CD21/CD35, e sottoinsiemi follicolari possono essere ulteriormente suddivisi in sottoinsiemi follicolari maturi di tipo I e follicolari di tipo II B a seconda del livello della loro espressione superficiale IgM e IgD24. Queste popolazioni di cellule B spleniche esprimono prevalentemente la catena leggera Igκ. Infine, in letteratura sono state descritte popolazioni di cellule B-1 B, che hanno origine nel fegato fetale e si trovano principalmente nelle cavità peritoneale e pleurica di topi adulti. Queste cellule B peritoneali possono essere distinte dalle cellule B-2 B precedentemente descritte per la loro mancanza di espressione di CD23. Sono poi ulteriormente suddivisi in popolazioni B-1a o B-1b, con la prima definita dalla presenza di CD5 e la seconda dalla sua assenza25. I progenitori delle cellule B-1 sono abbondanti nel fegato fetale, ma non si trovano nel BM adulto. Mentre le cellule B-1a e B-1b provengono da diversi progenitori, entrambe seminano le cavità peritoneale e pleurica24. A differenza delle cellule B-2, le cellule B-1 sono in grado di auto-rinnovarsi e sono responsabili della produzione di anticorpi IgM naturali.
Difetti nello sviluppo delle cellule B possono insorgere in molti casi, tra cui carenze nei componenti del BCR26,27, perturbazioni di molecole di segnalazione che influenzano la potenza di segnalazione BCR14,28,29, o interruzione delle citochine che modulano la sopravvivenza delle cellule B30,31 . L’analisi citometrica a flusso dei compartimenti linfoidi ha contribuito alla caratterizzazione dei blocchi di sviluppo delle cellule B in questi topi e in molti altri. Un vantaggio dell’analisi citometrica a flusso dei compartimenti linfoidi è che offre la possibilità di effettuare misurazioni su singole cellule ottenute da tessuto dissociato vivo. La disponibilità di reagenti in una gamma sempre più ampia di fluorofori consente l’analisi simultanea di più parametri e consente la valutazione dell’eterogeneità delle cellule B. Inoltre, l’enumerazione delle cellule B mediante analisi citometrica a flusso integra altri saggi immunologici come i metodi immunoistochimici che visualizzano la localizzazione cellulare all’interno degli organi linfoidi, il rilevamento dei livelli di anticorpi circolanti come misura dell’immunità umorale, nonché due microscopi a fotoni per misurare le risposte delle cellule B nello spazio e nel tempo reali32.
L’analisi citometrica a flusso di tessuti linfoidi e non linfoidi ha permesso l’identificazione simultanea e l’enumerazione delle sottopopolazioni di cellule B nei topi e negli esseri umani dal 1980. È stato usato come misura dell’immunità umorale e può essere applicato ulteriormente per valutare la funzionalità delle cellule B. Questo metodo sfrutta la disponibilità di reagenti per valutare le diverse fasi della maturazione delle cellule B nei topi e nell’uomo, attraverso l’analisi simultanea di più parametri che …
The authors have nothing to disclose.
Ringraziamo Matthew Sleeman per la lettura critica del manoscritto. Ringraziamo anche i dipartimenti Vivarium Operations e Flow Cytometry Core di Regeneron per aver supportato questa ricerca.
0.5 mL safe-lock Eppendorf tubes | Eppendorf | 22363611 | 0.5 mL microcentrifuge tube |
1.5mL Eppendorf tubes | Eppendorf | 22364111 | 1.5 mL microcentrifuge tube |
15 mL Falcon tubes | Corning | 352097 | 15 mL conical tube |
18 gauge needle | BD | 305196 | |
25 gauge needle | BD | 305124 | |
3 mL syringe | BD | 309657 | |
70 mM MACS SmartStrainer | Miltenyi Biotec | 130-110-916 | 70 mM cell strainer |
96 well U bottom plate | VWR | 10861-564 | |
ACK lysis buffer | GIBCO | A1049201 | red blood cell lysis buffer |
Acroprep Advance 96 Well Filter Plate | Pall Corporation | 8027 | filter plate |
B220 | eBiosciences | 17-0452-82 | |
BD CompBead Anti-Mouse Ig/κ | BD | 552843 | compensation beads |
BD CompBead Anti-Rat Ig/κ | BD | 552844 | compensation beads |
Bovine Serum Albumin | Sigma-Aldrich | A8577 | BSA |
BP-1 | BD | 740882 | |
Brilliant Stain Buffer | BD | 566349 | brilliant stain buffer |
C-Kit | BD | 564011 | |
CD11b | BD | 563168 | |
CD11b | BioLegend | 101222 | |
CD19 | BD | 560143 | |
CD21/35 | BD | 562756 | |
CD23 | BD | 740216 | |
CD24 (HSA) | BioLegend | 138504 | |
CD3 | BD | 561388 | |
CD3 | BioLegend | 100214 | |
CD43 | BD | 553270 | |
CD43 | BioLegend | 121206 | |
CD5 | BD | 563194 | |
CD93 | BD | 740750 | |
CD93 | BioLegend | 136504 | |
DPBS (1x) | ThermoFisher | 14190-144 | DPBS |
eBioscience Fixable Viability Dye eFluor 506 | ThermoFisher | 65-0866-14 | viability dye |
Extended Fine Tip Transfer Pipette | Samco | 233 | disposable transfer pipette |
FACSymphony A3 flow cytometer | BD | custom order | flow cytometer |
Fc Block, CD16/CD32 (2.4G2) | BD | 553142 | Fc block |
FlowJo | Flowjo | flow cytometer analysis software | |
gentleMACS C Tubes | Miltenyi Biotec | 130-096-334 | automated dissociation tube |
gentleMACS Octo Dissociator with Heaters | Miltenyi Biotec | 130-095-937 | tissue dissociator instrument |
GR1 (Ly6C/6G) | BioLegend | 108422 | |
IgD | BioLegend | 405710 | |
IgM | eBiosciences | 25-5790-82 | |
Kappa | BD | 550003 | |
Lambda | BioLegend | 407308 | |
paraformaldehyde, 32% Solution | Electron Microscopy Sciences | 15714 | |
Ter119 | BioLegend | 116220 | |
True-Stain Monocyte Blocker | BioLegend | 426103 | monocyte blocker |
UltraPure EDTA, pH 8.0 | ThermoFisher | 15575038 | EDTA |
Vi-CELL XR | Beckman Coulter | 731050 | cell counter instrument |