Desenvolvemos um método para detectar zoospores Phytophthora capsici em fontes de água usando um método de extração de DNA de papel filtro juntamente com um ensaio de amplificação isotérmica mediada em loop (LAMP) que pode ser analisado no campo ou no laboratório.
Phytophthora capsici é um patógeno oomycete devastador que afeta muitas culturas solanáceas e cucurbits importantes, causando perdas econômicas significativas na produção de vegetais anualmente. Phytophthora capsici é transmitida pelo solo e um problema persistente nos campos vegetais devido às suas estruturas de sobrevivência de longa duração (oosporos e clamídias) que resistem ao intemperamento e degradação. O principal método de dispersão é através da produção de zoosporos, que são esporos sinalizados de célula única que podem nadar através de filmes finos de água presentes em superfícies ou em poros de solo cheios de água e podem se acumular em poças e lagoas. Portanto, as lagoas de irrigação podem ser uma fonte do patógeno e dos pontos iniciais de surtos da doença. A detecção de P. capsici na água de irrigação é difícil usando métodos tradicionais baseados em cultura porque outros microrganismos presentes no ambiente, como pythium spp., geralmente superreceu P. capsici tornando-o indetectável. Para determinar a presença de esporos de P. capsici em fontes de água (água de irrigação, escoamento, etc.), desenvolvemos um método de filtro à base de bomba manual (8-10 μm) que captura os esporos do patógeno (zoospores) e é posteriormente usado para amplificar o DNA do patógeno através de um novo ensaio de amplificação isotérmica mediada por loop (LAMP) projetado para a amplificação específica de P. Este método pode amplificar e detectar DNA a partir de uma concentração tão baixa quanto 1,2 x 102 zoospores/mL, que é 40 vezes mais sensível do que o PCR convencional. Não foi obtida amplificação cruzada ao testar espécies intimamente relacionadas. A LÂMPADA também foi realizada utilizando um corante de mistura mestre lampimétrica, exibindo resultados que poderiam ser lidos a olho nu para detecção rápida no local. Este protocolo pode ser adaptado a outros patógenos que residem, acumulam ou são dispersos através de sistemas de irrigação contaminados.
A reciclagem de água em fazendas e viveiros está se tornando cada vez mais popular devido ao aumento dos custos de água e preocupações ambientais por trás do uso da água. Muitos métodos de irrigação foram desenvolvidos para os produtores reduzirem a propagação e a ocorrência de doenças vegetais. Independentemente da fonte da água (irrigação ou precipitação), o escoamento é gerado, e muitos produtores de hortaliças e berçários têm uma lagoa para coletar e reciclar o escoamento1. Isso cria um reservatório para possível acúmulo de patógenos favorecendo a disseminação de patógenos quando a água reciclada é usada para irrigar as culturas2,,3,4. Os patógenos vegetais oomycete se beneficiam particularmente dessa prática, pois os zoosporos se acumularão na água e o esporo dispersivo primário é auto-motil, mas requer água superficial5,,6,,7. Phytophthora capsici é um patógeno oomycete que afeta um número significativo de culturas solanáceas e cucurbitas de diferentes maneiras8. Muitas vezes, os sintomas são amortecimento de mudas, raízes e podridão da coroa; no entanto, em culturas como pepino, abóbora, melão, abóbora, melancia, berinjela e pimenta, colheitas inteiras podem ser perdidas devido à podridão de frutas9. Embora existam métodos conhecidos de detecção desse patógeno vegetal, a maioria requer uma infecção que já tenha ocorrido, o que é tarde demais para que quaisquer fungicidas preventivos tenham um efeito significativo10.
O método tradicional de teste da água de irrigação para a detecção e diagnóstico de microrganismos direcionados é uma abordagem antiquada quando a velocidade e a sensibilidade são cruciais para o sucesso e a produção rentável da cultura11,12. O tecido vegetal suscetível ao patógeno-alvo (por exemplo, berinjela para P. capsici) é anexado a uma armadilha modificada que é suspensa em uma lagoa de irrigação por um período prolongado antes de ser removida e inspecionada para infecção. As amostras do tecido vegetal são então banhadas em mídia semi-seletiva (PARPH) e incubadas para o crescimento da cultura, em seguida, a identificação morfológica é realizada usando um microscópio composto13. Existem outros métodos de detecção semelhantes para outros patógenos vegetais usando mídia seletiva e emplacando pequenas quantidades de água contaminada antes de sub-cultivo14,15. Esses métodos requerem entre 2 e 6 semanas, várias rodadas de subcultura para isolar o organismo, e experimentam em diagnósticos de Phytophthora para serem capazes de reconhecer os principais caracteres morfológicos de cada espécie. Esses métodos tradicionais não funcionam bem para detecção de água de irrigação contaminada por P. capsici devido a fatores como a interferência de outros microrganismos que também estão presentes nas fontes de água. Alguns microrganismos de rápido crescimento, como pythium spp. e bactérias transmitidas pela água podem crescer demais na placa tornando P. capsici indetectável16,17.
O objetivo deste estudo foi desenvolver um método molecular sensível e específico que possa ser utilizado tanto em ambientes de campo quanto em laboratório para detectar zoospores P. capsici na água de irrigação. O protocolo inclui o desenvolvimento de um novo primer de amplificação isotérmica mediada em loop (LAMP) capaz de amplificar especificamente P. capsici, baseado em um fragmento de par de 1121 bases (bp) de P. capsici18,19. Um primer LAMP previamente desenvolvido de Dong et al. (2015) foi utilizado em comparação com o ensaio que foi desenvolvido para este estudo20.
O ensaio LAMP é uma forma relativamente nova de detecção molecular que tem sido demonstrada ser mais rápida, sensível e específica do que a reação convencional de cadeia de polimerase (PCR)21. Em geral, os ensaios convencionais de PCR não podem detectar menos de 500 cópias (1,25 pg/μL); em contraste, estudos anteriores mostraram que a sensibilidade da LÂMPADA pode ser 10 a 1.000 vezes maior que a pcr convencional e pode facilmente detectar até mesmo 1 fg/μL de DNA genômico22,23. Além disso, o ensaio pode ser realizado rapidamente (muitas vezes em 30 minutos) e no local (no campo) usando um bloco de aquecimento portátil para amplificação e um corante colorimétrico que muda de cor para uma amostra positiva (removendo a necessidade de eletroforese). Neste estudo, comparamos a sensibilidade dos ensaios PCR e LAMP utilizando um método de extração de filtro. O método de detecção proposto permite que pesquisadores e agentes de extensão detectem facilmente a presença de esporos de P. capsici de diferentes fontes de água em menos de duas horas. O ensaio é provado ser mais sensível do que o PCR convencional e foi validado in situ detectando a presença do patógeno na água de irrigação usada por um produtor. Este método de detecção permitirá que os produtores estimem a presença e a densidade populacional do patógeno em várias fontes de água que estão sendo utilizadas para irrigação, prevenindo surtos devastadores e perdas econômicas.
O teste da água de irrigação para fitopatógenos é um passo crucial para os produtores que utilizam lagoas de irrigação e água reciclada27. As lagoas de irrigação fornecem um reservatório e um terreno fértil para uma série de fitopatógenos, uma vez que o excesso de água de irrigação é direcionado do campo para a lagoa carregando consigo quaisquer patógenos que possam ter estado presentes16,,27. O método tradicional de de…
The authors have nothing to disclose.
Este trabalho recebeu o apoio financeiro da Georgia Commodity Commission for Vegetables project ID# FP000016659. Os autores agradecem ao Dr. Pingsheng Ji, universidade da Geórgia e à Phytophthora sppDra. Agradecemos também li Wang e Deloris Veney por sua assistência técnica durante todo o estudo.
Agarose gel powder | Thomas Scientific | C997J85 | |
Buchner funnel | Southern Labware | JBF003 | |
Bullet Blender | Next Advance | BBX24 | |
Centrifuge 5430 | Eppendorf | 22620509 | |
Chloroform | Fischer Scientific | C298-500 | |
CTAB solution | Biosciences | 786-565 | |
Dneasy Extraction Kit | Qiagen | 69104 | |
Filter Flask | United | FHFL1000 | |
Filter Paper | United Scientific Supplies | FPR009 | |
Gel Green 10000X | Thomas Scientific | B003B68 (1/EA) | |
Genie III | OptiGene | ||
Hand pump | Thomas Scientific | 1163B06 | |
Iso-amyl Alcohol | Fischer Scientific | BP1150-500 | |
LAVA LAMP master mix | Lucigen | 30086-1 | |
Magnetic bead DNA extraction | Genesig | genesigEASY-EK | |
Magnetic Separator | Genesig | genesigEASY-MR | |
polyvinylpyrrolidone | Sigma Aldrich | PVP40-500G | |
Primers | Sigma Aldrich | ||
Prism Mini Centrifuge | Labnet | C1801 | |
T100 Thermal Cycler | Bio-Rad | 1861096 | |
UV Gel Doc | Analytik Jena | 849-00502-2 | |
Warmstart Colorimetric Dye | Lucigen | E1800m | |
Wide Mini ReadySub-Cell GT Cell | Bio-Rad | 1704489EDU | |
70% isopropanol | Fischer Scientific | A451-1 |