Nous avons développé une méthode pour détecter phytophthora capsici zoospores dans les sources d’eau à l’aide d’une méthode d’extraction d’ADN de papier filtre couplée à un test d’amplification isothermique (LAMP) à médiation en boucle qui peut être analysé sur le terrain ou en laboratoire.
Phytophthora capsici est un pathogène dévastateur de l’oomycéte qui affecte de nombreuses importantes cultures de solanacée et de cucurbitacées causant des pertes économiques importantes dans la production végétale chaque année. Phytophthora capsici est transmis par le sol et un problème persistant dans les champs de légumes en raison de ses structures de survie à longue durée de vie (oospores et chlamydospores) qui résistent aux intempéries et à la dégradation. La principale méthode de dispersion consiste à produire des zoospores, qui sont des spores à unicellulaire et flagellées qui peuvent nager à travers de minces couches d’eau présentes sur les surfaces ou dans des pores de sol remplis d’eau et qui peuvent s’accumuler dans des flaques d’eau et des étangs. Par conséquent, les étangs d’irrigation peuvent être une source de l’agent pathogène et les premiers points d’éclosion de la maladie. La détection de P. capsici dans l’eau d’irrigation est difficile en utilisant des méthodes traditionnelles basées sur la culture parce que d’autres micro-organismes présents dans l’environnement, tels que Pythium spp., généralement surgrow P. capsici le rendant indétectable. Pour déterminer la présence de spores de P. capsici dans les sources d’eau (eau d’irrigation, ruissellement, etc.), nous avons mis au point une méthode de papier filtre à pompe manuelle (8-10 μm) qui capture les spores de P. capsici. l’agent pathogène (zoospores) et est plus tard utilisée pour amplifier l’ADN de l’agent pathogène par le biais d’une nouvelle amplification isothermique (LAMP) à médiation en boucle. Cette méthode peut amplifier et détecter l’ADN d’une concentration aussi faible que 1,2 x 102 zoospores/mL, qui est 40 fois plus sensible que le PCR conventionnel. Aucune amplification croisée n’a été obtenue lors de l’essai d’espèces étroitement apparentées. LAMP a également été réalisé à l’aide d’un colorant de mélange de maître de lampe colorimétrique, affichant des résultats qui pourraient être lus à l’œil nu pour la détection rapide sur place. Ce protocole pourrait être adapté à d’autres agents pathogènes qui résident, s’accumulent ou sont dispersés par des systèmes d’irrigation contaminés.
Le recyclage de l’eau dans les fermes et les pépinières est de plus en plus populaire en raison de l’augmentation des coûts de l’eau et des préoccupations environnementales liées à l’utilisation de l’eau. De nombreuses méthodes d’irrigation ont été mises au point pour permettre aux producteurs de réduire la propagation et l’apparition des maladies végétales. Indépendamment de la source de l’eau (irrigation ou précipitations), le ruissellement est généré, et de nombreux producteurs de légumes et de pépinières ont un étang pour recueillir et recycler le ruissellement1. Cela crée un réservoir pour l’accumulation possible de pathogènes favorisant la propagation des agents pathogènes lorsque l’eau recyclée est utilisée pour irriguer les cultures2,3,4. Les agents pathogènes des plantes d’Oomycète bénéficient particulièrement de cette pratique car les zoospores s’accumuleront dans l’eau et la spore dispersive primaire est auto-motile mais nécessite l’eau de surface5,6,7. Phytophthora capsici est un pathogène oomycéte qui affecte un nombre important de cultures solanacées et cucurbitées de différentes façons8. Souvent, les symptômes sont l’amortissement des semis, de la racine et de la pourriture de la couronne; toutefois, dans les cultures telles que le concombre, la courge, le melon, la citrouille, la pastèque, l’aubergine et le poivre, des récoltes entières peuvent être perdues en raison de la pourriture des fruits9. Bien qu’il existe des méthodes connues de détection de ce pathogène végétal, la plupart exigent qu’une infection ait déjà eu lieu, ce qui est trop tard pour que les fongicides préventifs aient un effet significatif10.
La méthode traditionnelle pour tester l’eau d’irrigation pour la détection et le diagnostic de micro-organismes ciblés est une approche désuète lorsque la vitesse et la sensibilité sont cruciales pour le succès et la production agricole rentable11,12. Les tissus végétaux sensibles à l’agent pathogène ciblé (p. ex., l’aubergine pour P. capsici)sont attachés à un piège modifié qui est suspendu dans un étang d’irrigation pendant une période prolongée avant d’être enlevé et inspecté pour détecter l’infection. Les échantillons prélevés sur le tissu végétal sont ensuite plaqués sur des milieux semi-sélectifs (PARPH) et incubés pour la croissance de la culture, puis l’identification morphologique est effectuée à l’aide d’un microscope composé13. Il existe d’autres méthodes de détection similaires pour d’autres agents pathogènes végétaux utilisant des milieux sélectifs et en plaisantant de petites quantités d’eau contaminée avant de sous-cultiver14,15. Ces méthodes nécessitent entre 2 et 6 semaines, plusieurs cycles de sous-culture pour isoler l’organisme, et l’expérience sur les diagnostics phytophthora pour être en mesure de reconnaître les caractères morphologiques clés de chaque espèce. Ces méthodes traditionnelles ne fonctionnent pas bien pour la détection de l’eau d’irrigation contaminée par P. capsici en raison de facteurs tels que l’interférence par d’autres micro-organismes qui sont également présents dans les sources d’eau. Certains micro-organismes à croissance rapide comme Pythium spp. et les bactéries d’origine hydrique peuvent surgrow sur la plaque rendant P. capsici indétectable16,17.
Le but de cette étude était de développer une méthode moléculaire sensible et spécifique qui peut être utilisée à la fois dans les milieux de terrain et de laboratoire pour détecter les zoospores P. capsici dans l’eau d’irrigation. Le protocole comprend le développement d’un nouvel ensemble d’amorces isothermiques médiés en boucle (LAMP) capable d’amplifier spécifiquement P. capsici, basé sur un fragment de 1121 paires de base (pb) de P. capsici18,19. Une amorce LAMP précédemment développée de Dong et coll. (2015) a été utilisée par rapport à l’essai qui a été développé pour cette étude20.
L’essai LAMP est une forme relativement nouvelle de détection moléculaire qui s’est avérée plus rapide, plus sensible et plus spécifique que la réaction en chaîne conventionnelle de polymérase (PCR)21. En général, les tests PCR conventionnels ne peuvent pas détecter à moins de 500 copies (1,25 pg/μL); en revanche, des études antérieures ont montré que la sensibilité de LAMP peut être 10 à 1000 fois plus élevée que le PCR conventionnel et peut facilement détecter même 1 fg/μL d’ADN génomique22,23. En outre, l’essai peut être effectué rapidement (souvent en 30 min) et sur place (sur le terrain) en utilisant un bloc de chauffage portable pour l’amplification et un colorant colorimétrique qui change de couleur pour un échantillon positif (en supprimant le besoin d’électrophorèse). Dans cette étude, nous avons comparé la sensibilité des tests PCR et LAMP à l’aide d’une méthode d’extraction de filtre. La méthode de détection proposée permet aux chercheurs et aux agents d’extension de détecter facilement la présence de spores de P. capsici provenant de différentes sources d’eau en moins de deux heures. L’essai s’est avéré plus sensible que le PCR conventionnel et a été validé in situ en détectant la présence de l’agent pathogène dans l’eau d’irrigation utilisée par un producteur. Cette méthode de détection permettra aux producteurs d’estimer la présence et la densité de population de l’agent pathogène dans diverses sources d’eau qui sont utilisées pour l’irrigation, prévenir les flambées dévastatrices et les pertes économiques.
L’essai de l’eau d’irrigation pour les phytopathogènes est une étape cruciale pour les producteurs utilisant des étangs d’irrigation et de l’eau recyclée27. Les étangs d’irrigation fournissent un réservoir et un terrain de reproduction pour un certain nombre de phytopathogènes car l’excès d’eau d’irrigation est dirigé du champ à l’étang transportant avec lui tous les agents pathogènes qui peuvent avoir été présents16,<sup class=…
The authors have nothing to disclose.
Ces travaux ont reçu le soutien financier du projet ID# FP00016659 de la Georgia Commodity Commission for Vegetables. Les auteurs remercient le Dr Pingsheng Ji, Université de Géorgie et le Dr Anne Dorrance, Ohio State University pour fournir des cultures pures de Phytophthora spp. Nous remercions également Li Wang et Deloris Veney pour leur assistance technique tout au long de l’étude.
Agarose gel powder | Thomas Scientific | C997J85 | |
Buchner funnel | Southern Labware | JBF003 | |
Bullet Blender | Next Advance | BBX24 | |
Centrifuge 5430 | Eppendorf | 22620509 | |
Chloroform | Fischer Scientific | C298-500 | |
CTAB solution | Biosciences | 786-565 | |
Dneasy Extraction Kit | Qiagen | 69104 | |
Filter Flask | United | FHFL1000 | |
Filter Paper | United Scientific Supplies | FPR009 | |
Gel Green 10000X | Thomas Scientific | B003B68 (1/EA) | |
Genie III | OptiGene | ||
Hand pump | Thomas Scientific | 1163B06 | |
Iso-amyl Alcohol | Fischer Scientific | BP1150-500 | |
LAVA LAMP master mix | Lucigen | 30086-1 | |
Magnetic bead DNA extraction | Genesig | genesigEASY-EK | |
Magnetic Separator | Genesig | genesigEASY-MR | |
polyvinylpyrrolidone | Sigma Aldrich | PVP40-500G | |
Primers | Sigma Aldrich | ||
Prism Mini Centrifuge | Labnet | C1801 | |
T100 Thermal Cycler | Bio-Rad | 1861096 | |
UV Gel Doc | Analytik Jena | 849-00502-2 | |
Warmstart Colorimetric Dye | Lucigen | E1800m | |
Wide Mini ReadySub-Cell GT Cell | Bio-Rad | 1704489EDU | |
70% isopropanol | Fischer Scientific | A451-1 |