Summary

人类自然杀手细胞代谢分析

Published: June 22, 2020
doi:

Summary

在这张纸上,我们描述了一种测量从周围血液分离的原生人类自然杀手(NK)细胞中的糖解和线粒体呼吸的方法,在休息时或IL15诱导的活化之后。所述协议可以很容易地扩展到由其他细胞因子或可溶性刺激激活的原发性人类NK细胞。

Abstract

自然杀手(NK)细胞主要调解先天抗肿瘤和抗病毒免疫反应,并响应各种细胞因子和其他刺激,以促进生存,细胞增殖,细胞因子的生产,如干扰素伽马(IFN+)和/或细胞毒性程序。细胞因子刺激的NK细胞活化需要大量重塑代谢途径,以支持其生物能量和生物合成要求。大量证据表明,NK细胞代谢受损与包括肥胖和癌症在内的许多慢性疾病有关,这突出了确定NK细胞代谢方法的临床重要性。在这里,我们描述了使用细胞外通量分析仪,一个平台,允许实时测量糖解和线粒体氧气消耗,作为一个工具,监测人类NK细胞的能量代谢变化。此处描述的方法还允许使用细胞因子(如 IL-15)刺激NK细胞后监测代谢变化,该系统目前正在广泛的临床试验中研究。

Introduction

自然杀手(NK)细胞是先天淋巴细胞,调解抗肿瘤和抗病毒反应。NK细胞占人类周围血中所有淋巴细胞的5-15%,也可以在脾脏、肝脏、骨髓和淋巴结中发现。NK细胞不表达多态克隆性受体,如T细胞受体(TCR)或B细胞受体(BCR)。相比之下,细胞解功能的激活是由识别目标细胞1,2表面不变配体受体的接合促使2

从外周血液中分离出的休息人类NK细胞可以在培养基中存活数天,并辅以人体血清。细胞因子(如IL-15或IL-2)激活NK细胞,推动细胞增殖,并增加其杀杀能力,除其他影响3、4、5,等。3,几项研究表明NK细胞活化与其代谢活性6的变化有直接关系。这些代谢变化注定要满足细胞在能量和生物合成方面的特殊要求。

有氧细胞和生物体通过一系列化学反应获得能量,这些化学反应涉及碳水化合物、脂肪和蛋白质的代谢和氧化。通过糖解、三分子酸 (TCA) 循环和氧化磷酸化的组合,真核细胞满足其大多数 ATP 需求,并获得作为大分子构建基块所需的中间体,这些中间体对于细胞生长和增殖至关重要。糖解过程 (图1A) 从葡萄糖进入细胞开始.在细胞醇中,葡萄糖被磷酸化并转化为丙酮酸盐(每葡萄糖分子净产生2个ATP分子),可降为乳酸或被运送到线粒体中,转化为乙酰-CoA并进入TCA周期。TCA循环继续循环使用更多的乙酰-CoA分子燃料,产生CO2( 最终扩散到细胞外,并在介质中与H2O反应,将产生碳酸,导致介质酸化)和NADH,负责向电子传输链(ETC)捐赠电子的分子。电子通过不同的蛋白质复合物,最终被氧气接受。这些复合物(I、III 和 IV)也将H+ 从线粒体矩阵泵入膜间空间。由于产生的电化学梯度,H+ 将再次通过复杂的V(ATP-合成酶)进入矩阵,将积累到ATP生成中的潜在能量。

糖解和线粒体呼吸都可以使用抑制剂在不同的点阻塞。这些抑制剂的知识和用法是细胞外通量测定发展的基础。通过实时测量 pH 和氧气等两个简单的参数,细胞外通量分析仪推断出 96 井板中的糖解和线粒体呼吸速率。糖解压力测试在无葡萄糖的基础介质中进行(图1B)7。Figure 1B细胞外酸化率(ECAR)的第一次测量表明糖解与酸化无关。它被称为非糖解酸化,与TCA产生的CO2相关,如前所述,在介质中与H2O结合,产生H+(TCA链接ECAR)。第一注射是葡萄糖,以诱导葡萄糖利用和促进糖解。第二次注射结合了罗泰酮,一种复杂的一种抑制剂,以及一种复杂的III抑制剂,以阻止EC。细胞通过激活糖解来对线粒体ATP产量的急剧下降作出反应,以保持细胞ATP水平,这代表了细胞在基底状态下未使用,但可能为响应ATP需求增加(补偿性糖解)而招募的糖解量。第三种注射是葡萄糖模拟2-脱氧葡萄糖(DG),它与葡萄糖竞争作为酶六核酸酶的基质。磷酸化的产物,2-脱氧葡萄糖-6-磷酸盐不能转化为丙酮酸盐,因此糖解被阻断,从而将ECAR降低至最低。此时测量的 ECAR 包括其他细胞外酸化来源,这些来源不归因于糖解或呼吸活动,以及任何未完全抑制 2-DG 的残余糖解(2-DG 酸化后)。

线粒体应激测试在具有葡萄糖的介质中进行(图1C)8。8首次测量耗氧率 (OCR) 对应于线粒体呼吸(基础呼吸)的基准线。第一注射是寡霉素,它通过ATP合成酶(复合V)抑制质子的返回,阻止ATP合成,从而迅速超极化线粒体膜,防止质子进一步通过呼吸复合物泵送,并导致OCR的减少。基线呼吸与添加寡霉素给出的值之间的比较表示 ATP 链接的呼吸。剩余的寡糖霉素不敏感耗氧率称为质子泄漏,它表示质子流经内线粒体膜中的脂质双层体或蛋白质,如腺苷核苷酸转包9。第二次注射是未合成器2,4-二钙酚(DNP),一种离子磷酸盐,诱导H+大量进入线粒体,导致线粒体膜去极化和线粒体ATP合成中断。细胞通过将电子传输速率和氧气消耗率提高至最高水平来响应质子动力的耗散,这是试图恢复膜电位(最大呼吸能力)的徒劳尝试。最大呼吸能力与基础呼吸之间的区别在于细胞的备用呼吸能力,它表示细胞未用于生成基础状态的ATP的呼吸量,但可能会因ATP需求增加或在压力8条件下而招募。第三次注射是罗酮和抗霉素 A 的组合。这种注射完全停止 ETC 和 OCR 降至最低水平,剩余耗氧量为非线粒体(由 NADPH-氧化等引起)。

代谢通路的变化可以以某种方式预测NK细胞的功能,因为有人建议,连续激活NK细胞与细胞因子在体外可能导致NK细胞衰竭,通过研究不同的代谢途径10,11。10,从癌症免疫治疗的角度来看,NK细胞代谢状态与功能的相关性非常重要。在这一领域,激活NK细胞与输注IL-15,单独或结合单克隆治疗抗体已经测试,以改善肿瘤细胞杀死12,13,14。12,13,14了解NK细胞的代谢状态,以响应这些治疗策略将提供NK细胞活化状态和杀功能的宝贵预测。

其他骨髓细胞和淋巴细胞(如单核细胞、T细胞和B细胞)代谢途径的研究已经描述了15种,优化方法已发表16种。在该协议中,我们提供一种结合了NK隔离协议的方法,该协议产生大量纯和可行的NK细胞,并优化了使用细胞外通量分析仪测量代谢活性的协议。在这里,我们表明,这是一个有效的方法,研究代谢变化在休息和IL-15激活人类NK细胞。对于细胞外通量测定,对细胞数和药物浓度等参数进行了测试和优化。与其他复方测量方法相比,细胞外通量分析仪完全自动化,能够实时测试,电池数量非常低,同时多达92个样本,因此允许以相对快速的方式进行高通量筛选(具有多个样品和复制)。

这种方法可用于有兴趣通过研究NK细胞代谢来评估NK细胞功能的研究人员。它也可以应用于由其他细胞因子、抗体或可溶性刺激激活的细胞。

Protocol

所有实验都是根据《赫尔辛基医学研究伦理原则宣言》进行的。根据99-CC-0168 IRB批准的方案,从NIH输血医学部获得捐赠者的外周血样,并征得患者书面知情同意。 1. 试剂制备 用于隔离NK细胞的试剂注:在细胞培养罩中准备这些试剂。 准备NK分离缓冲液:补充PBS(pH 7.4),用1 mM EDTA和2%胎儿小牛血清(FCS),以前已经热灭活(在56°C下30分钟)。…

Representative Results

从外周血分离NK细胞提供了一个纯净和可行的种群 细胞外通量测定基于对井中H+和 O2 浓度的测量,不会区分不同细胞群体或其生存能力。因此,获得一个高度纯净和可行的兴趣细胞群体是这些实验成功的关键步骤。 如第2节所述,从外周血中分离NK细胞。为了评估获得的NK细胞的纯度和可行性,通过流式细胞学对来自PMBC和分离?…

Discussion

本文建立了一种协议,从外周血中有效隔离和培养纯和可行的原人类NK细胞。我们还利用细胞外通量分析仪,优化了这些NK细胞的代谢活性测量条件,这些细胞的代谢活性按耗氧率和细胞外酸化率进行评估。与其他再测量方法相比,细胞外通量分析仪速度快,需要少量细胞,并允许高通量筛选。然而,它的试剂是昂贵的,和注射化合物仅限于四。NK细胞细胞因子对糖解和氧化磷酸化的代谢重塑和激?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢MichaelN.Sack博士(国家心脏、肺和血液研究所)的支持和讨论。这项研究得到了国家卫生研究院、国家癌症研究所和国家心脏、肺和血液研究所的校内研究项目的支持。JT 由 MICIN(西班牙)的 Ramon y Cajal 计划(授予 RYC2018-026050-I)支持。

Materials

2-Deoxy-D-glucose (2-DG) MilliporeSigma D8375-5G Glycolyisis stress test injector compound
2,4-Dinotrophenol (2,4-DNP) MilliporeSigma D198501 ETC uncoupler / mitochondrial stress test injector compound
96 Well Cell Culture Plate/ Round bottom with Lid Costar 3799 NK cell culture
Antimycin A MilliporeSigma A8674 Complex III inhibitor / glycolysis and mitochondrial stress test injector compound
BD FACSDIVA Software BD Biosciences Flow data acquisition
BD LSR Fortessa BD Biosciences Flow data acquisition
Cell-Tak Corning 354240 Cell adhesive
CyQUANT cell proliferation assay ThermoFisher Scientific C7026 Cell proliferation Assay for DNA quantification. Contains cell-lysis buffer and CyQUANT GR dye
EasySep Human CD3 Positive Selection Kit II Stemcell technologies 17851 NK cell isolation from PBMCs
EasySep Human NK cell Enrichment Kit Stemcell technologies 19055 NK cell isolation from PBMCs
EasySep Magnet Stemcell technologies 18001 NK cell isolation from PBMCs
EDTA 0.5 M, pH 8 Quality Biological 10128-446 NK sell separation buffer
FACS tubes Falcon-Fisher Scientific 352235 Flow cytometry experiment
Falcon 50 ml Conical tubes Falcon-Fisher Scientific 14-432-22 NK cell separation
Fetal Calf Serum (FCS) Gibco 10437-028 NK cell separation buffer
FlowJo Software BD Biosciences Flow data analysis
Glucose MilliporeSigma G8270 Component of mitochondrial stress test medium. Glycolysis stress test injector compound
Halt Protease Inhibitor Cocktail ThermoFisher Scientific 78429 Protease inhibitor 100X. Use in RIPA lysis buffer
Human IL-15 Peprotech 200-15-50ug NK cell stimulation
Human serum (HS) Valley Biomedical 9C0539 NK cell culture medium supplement
IMDM Gibco 12440053 NK cell culture medium
L-Glutamine (200 mM) ThermoFisher Scientific 25030-081 Component of stress test media
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit ThermoFisher Scientific L34965 Viability dye for flow cytometry staining
LSM mpbio 50494X PBMCs separation from human blood
Mouse anti-human CD3 BV711 BD Biosciences 563725 T cell flow cytometry staining
Mouse anti-human CD56 PE BD Pharmingen 555516 NK flow cytometry staining
Mouse anti-human NKp46 PE BD Pharmingen 557991 NK flow cytometry staining
Oligomycin MilliporeSigma 75351 Complex V inhibitor / mitochondrial stress test injector compound
PBS pH 7.4 Gibco 10010-023 NK cell separation buffer
Pierce BCA Protein Assay Kit ThermoFisher Scientific 23225 For determination of protein concentration
RIPA Buffer Boston BioProducts BP-115 Cell lysis
Rotenone MilliporeSigma R8875 Complex II inhibitor / glycolysis and mitochondrial stress test injector compound
Seahorse Wave Controller Software Agilent Controller for the Seahorse XFe96 Analyzer
Seahorse Wave Desktop Software Agilent For data analysis
Seahorse XF Base Medium Agilent 102353-100 Extracellular Flux assay base medium
Seahorse XFe96 Analyzer Agilent Extracellular Flux Analyzer
Seahorse XFe96 FluxPak Agilent 102416-100 Includes 20 XF96 cell culture plates, 18 XFe96 sensor cartridges, loading guides for transferring compounds to the assay cartridge, and 1 bottle of calibrant solution (500 ml).
Sodium bicarbonate MilliporeSigma S5761 To prepare the Cell-Tak solution
Sodium pyruvate (100 mM) ThermoFisher Scientific 11360-070 Component of mitochondrial stress test medium

Referências

  1. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E., Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annual Review of Immunology. 31, 227-258 (2013).
  2. Caligiuri, M. A. Human natural killer cells. Blood. 112 (3), 461-469 (2008).
  3. Anton, O. M., Vielkind, S., Peterson, M. E., Tagaya, Y., Long, E. O. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors. Journal of Immunology. 195 (10), 4810-4821 (2015).
  4. Henney, C. S., Kuribayashi, K., Kern, D. E., Gillis, S. Interleukin-2 augments natural killer cell activity. Nature. 291 (5813), 335-338 (1981).
  5. Anton, O. M., et al. Trans-endocytosis of intact IL-15Ralpha-IL-15 complex from presenting cells into NK cells favors signaling for proliferation. Proceedings of the National Academy of Sciences of the United States of America. 117 (1), 522-531 (2020).
  6. Marcais, A., et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology. 15 (8), 749-757 (2014).
  7. Mookerjee, S. A., Nicholls, D. G., Brand, M. D. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements. PloS One. 11 (3), 0152016 (2016).
  8. Brand, M. D., Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochemical Journal. 435 (2), 297-312 (2011).
  9. Cheng, J., et al. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Advances in Experimental Medicine and Biology. 982, 359-370 (2017).
  10. Terren, I., Orrantia, A., Vitalle, J., Zenarruzabeitia, O., Borrego, F. NK Cell Metabolism and Tumor Microenvironment. Frontiers in Immunology. 10, 2278 (2019).
  11. Felices, M., et al. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. Journal of Clinical Investigation Insight. 3 (3), 96219 (2018).
  12. Miller, J. S., et al. A First-in-Human Phase I Study of Subcutaneous Outpatient Recombinant Human IL15 (rhIL15) in Adults with Advanced Solid Tumors. Clinical Cancer Research. 24 (7), 1525-1535 (2018).
  13. Conlon, K. C., et al. IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clinical Cancer Research. 25 (16), 4945-4954 (2019).
  14. Dubois, S., et al. IL15 Infusion of Cancer Patients Expands the Subpopulation of Cytotoxic CD56(bright) NK Cells and Increases NK-Cell Cytokine Release Capabilities. Cancer Immunology Research. 5 (10), 929-938 (2017).
  15. Traba, J., et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. Journal of Clinical Investigation. 125 (12), 4592-4600 (2015).
  16. Traba, J., Miozzo, P., Akkaya, B., Pierce, S. K., Akkaya, M. An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes. Journal of Visualized Experiments. (117), e54918 (2016).
  17. Horan, M. P., Pichaud, N., Ballard, J. W. Review: quantifying mitochondrial dysfunction in complex diseases of aging. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 67 (10), 1022-1035 (2012).
  18. Tognarelli, S., Jacobs, B., Staiger, N., Ullrich, E. Flow Cytometry-based Assay for the Monitoring of NK Cell Functions. Journal of Visualized Experiments. (116), e54615 (2016).
  19. Theorell, J., Bryceson, Y. T. Analysis of Intracellular Ca(2+) Mobilization in Human NK Cell Subsets by Flow Cytometry. Methods in Molecular Biology. 1441, 117-130 (2016).
  20. Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G., Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Journal of Biological Chemistry. 292 (17), 7189-7207 (2017).
  21. O’Brien, K. L., Finlay, D. K. Immunometabolism and natural killer cell responses. Nature Reviews: Immunology. 19 (5), 282-290 (2019).
  22. Ahn, B. H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 105 (38), 14447-14452 (2008).
  23. Stram, A. R., Payne, R. M. Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cellular and Molecular Life Sciences. 73 (21), 4063-4073 (2016).
  24. Armstrong, J. A., et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. Journal of Biological Chemistry. 293 (21), 8032-8047 (2018).
  25. Mookerjee, S. A., Goncalves, R. L. S., Gerencser, A. A., Nicholls, D. G., Brand, M. D. The contributions of respiration and glycolysis to extracellular acid production. Biochimica et Biophysica Acta. 1847 (2), 171-181 (2015).
  26. Mookerjee, S. A., Brand, M. D. Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate. Journal of Visualized Experiments. (106), e53464 (2015).
  27. Lichtshtein, D., Kaback, H. R., Blume, A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proceedings of the National Academy of Sciences of the United States of America. 76 (2), 650-654 (1979).
  28. Michelet, X., et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology. 19 (12), 1330-1340 (2018).

Play Video

Citar este artigo
Traba, J., Waldmann, T. A., Anton, O. M. Analysis of Human Natural Killer Cell Metabolism. J. Vis. Exp. (160), e61466, doi:10.3791/61466 (2020).

View Video