Summary

双直接注射血液到西斯特纳麦格作为苏巴拉奇内德出血的模型

Published: August 30, 2020
doi:

Summary

我们在该协议中描述了一个标准化的亚巴纳内出血 (SAH) 小鼠模型,通过双注射自体全血到 cisterna 磁石。双注射程序高度标准化,代表了在死亡率方面相对安全性的SAH中急性模型。

Abstract

在中风中,继脑动脉动脉瘤破裂的亚拉氏出血(SAH)占5-9%,但占总中风相关死亡率的30%左右,在神经结果方面具有重要的发病率。延迟脑血管痉血 (CVS) 可能最常见的发生与延迟脑缺血有关。SAH的不同动物模型正在被使用,包括血管内穿孔和直接注射血液到西斯特纳磁石,甚至前三体蓄水池,每个都表现出明显的优缺点。本文通过双直接注射确定量的自体全血进入西斯特纳磁石,提出了SAH的标准化小鼠模型。简单地说,小鼠被称重,然后通过吸入异氟兰麻醉。然后,动物被放置在加热毯子的倾斜位置,保持37°C的直肠温度,并放置在一个立体教学框架与宫颈弯曲约30°。一旦到位,一个拉长的玻璃微管的尖端充满了同源动脉血从另一个相同年龄和性别的小鼠动脉(C57Bl/6J)的同位素动脉通过微气器与亚特兰托-腹膜接触的直角。然后将60μL的血液注射到西斯特纳磁石中,然后动物向下倾斜2分钟。第二次输液30μL的血液到西斯特纳磁石后24小时进行第一次。每天对每只动物进行个体随从(仔细评估体重和健康)。这个程序允许血液的可预测和高度可重复的分布,可能伴随着颅内压力升高,可以通过人工脑脊髓液(CSF)的等效注射来模拟,并代表SAH诱导低死亡率的急性至轻度模型。

Introduction

苏巴拉奇内出血(SAH)占所有中风病例的5%,是一种相对常见的病理学,每年每10万人发生7.2至9例患者,死亡率为20%-60%,取决于研究1、2、3。,31,在急性期,死亡率归因于出血、再出血、脑血管痉血症(CVS)和/或医疗并发症的严重程度。在幸存者中,早期脑损伤(EBI)与出血的颅骨延长和颅内压力的突然增加有关,这可能导致原发性脑缺血5和直接死亡约10%-15%的病例6。SAH的初始”急性”阶段后,预后取决于”继发性”或延迟性脑缺血(DCI)的发生,近40%的患者通过脑计算机断层扫描检测,在磁共振成像(MRI)7、8,后的患者中检测到高达80%。除了大多数SAH患者动脉瘤破裂后4至21天发生的CVS外,DCI9可能由多因素扩散性脑损伤继发性到微膜形成、脑灌注减少、神经炎和皮质扩散抑郁症(CSD)10、11、12、13,11,12,等引起。这影响30%的SAH幸存者,并影响认知功能,包括视觉记忆,语言记忆,反应时间,执行,视觉空间和语言功能14损害日常生活15。目前的标准疗法,以防止CVS和/或SAH患者的认知结果差是基于Ca 2+信号和血管收缩的阻塞,使用Ca 2+通道抑制剂作为尼莫地平。然而,最近针对血管收缩的临床试验显示,患者的神经学结果与CVS16的预防分离,表明在SAH长期后果中涉及更复杂的病理生理机制。因此,医学上需要更好地了解伴随 SAH 的病理事件的数量,并开发有效和标准化的动物模型来测试原始治疗干预措施。

在临床前动物模型中,对人中SAH负有主要责任的颅内动脉瘤的破裂可能难以模仿。目前,动脉瘤破裂和SAH情况可以初步测试中脑动脉穿孔负责CVS和敏感运动功能障碍的小鼠17,18。17,由于该模型中对出血的发作和血液扩散缺乏任何可能的控制,啮齿动物已经开发出其他方法,以生成SAH模型,而不会血管内破裂。更确切地说,它们包括通过单注射或双注射到磁石cisterna 19或一次注射到前基亚体蓄水池20中,将动脉血直接注入到亚巴纳空间。这些小鼠模型没有血管内破裂的主要优点是有可能重复掌握外科手术和注射血液样本的质量和数量。与模型的血管内穿孔,该模型的另一个优势是保护动物的一般福祉。事实上,这种手术的侵入性较小,技术上也不像产生卡罗蒂墙破裂所需的那样具有挑战性。在最后的模型中,动物必须插管和机械通风,而单丝插入外部胡萝卜动脉,并先进的内部胡萝卜动脉。这可能导致暂时性缺血,由于血管阻塞的电线路径。因此,与血管穿孔模型相比,与手术相关的共病(死亡状态、重要疼痛和死亡)在双注射模型中不太重要。除了是一个更一致的SAH,双直注射法在研究和测试中符合动物福利(麻醉下的时间减少,手术中组织中断和痛苦造成的疼痛),并导致用于协议研究和人员培训的动物总数最少。

此外,这允许对转基因小鼠实施相同的协议,从而对SAH的病理理解得到优化,并有可能对潜在的治疗化合物进行对比测试。在这里,我们提出了一个标准化的小鼠模型的亚巴奇诺德出血(SAH)通过每天双连续注射自体动脉血到西斯特纳磁石在6-8周大的雄性C57Bl/6J小鼠。与血管穿孔模型相比,该模型的主要优点是控制出血量,在不急剧增加颅内压力的情况下加强出血事件。最近,在小鼠的实验和生理问题上,对双直接注射血液进行了很好描述。事实上,我们最近展示了大脑动脉(巴西拉(BA),中间(MCA)和前(ACA)脑动脉,脑血管纤维蛋白沉积和细胞凋亡从第3天(D3)到10(D10),前血管脑脊液的循环缺陷伴随着改变的敏感运动和认知功能在小鼠,10天后SAH在这个模型22。因此,它使该模型掌握,验证和特征的短期和长期事件后SAH。它应该非常适合前瞻性识别新靶点和研究针对SAH相关并发症的有效和高效的治疗策略。

Protocol

所有程序都是根据法国道德委员会和欧洲议会第2010/63/EU号指令和用于科学目的的动物保护理事会的准则,在H.Castel的监督下进行的。该项目得到了当地CENOMEXA和国家动物研究和测试伦理委员会的批准。雄性 C57Bl/6J Rj 小鼠(Janvier),年龄为 8 至 12 周,在受控标准环境条件下安置:22 °C ± 1 °C,12 小时/12 小时光/暗循环,水和食物可用广告。 1. SAH 手术的设置和注射准备</stro…

Representative Results

实验时间表、程序、随从和死亡率图 1A 和图 1B 通过双针注射血液来总结 SAH 模型协议。简言之,在SAH诱导(D-1)的第一天,从同源小鼠中抽出的60μL血液或60μL的人工脑脊液(aCSF)分别注射到SAH或假条件下的西斯特纳磁石中。第二天(D0),从同源小鼠中抽出的30μL或30μL的ACSF分别注射到SAH或Sham条件下的西斯特纳磁石中。手术后24小时,…

Discussion

尽管过去二十年来,SAH领域的研究强度加大,以及血管内和药理治疗方案等治疗策略的发展不断增加,但住院第一周的死亡率仍然很高,在24、25,年的6个月中达到约50%。. 这种目前的临床前模型,每天双注射同源动脉血到西斯特纳磁石已被确认为其有效性和与低死亡率的关系。事实上,在SAH啮齿动物模型中, 已报告死亡率范围很广:0-16%死?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢PRIMACEN平台(法国诺曼底鲁昂大学)的成像设备,感谢阿诺德·阿拉博先生、朱莉·莫科特尔夫人和马丁·杜布瓦夫人的动物住房和护理。我们感谢塞莱斯特·尼古拉夫人为协议的录像提供她的声音。这项工作得到了塞纳里·诺曼底成熟计划、FRM、诺曼底鲁昂大学和因塞姆赞助。诺曼底地区和欧盟(3R项目)。欧洲与欧洲区域发展基金(ERDF)一起参与诺曼底。

Materials

absorbable hemostat Ethicon Surgicel
absorbable suturing thread Ethicon Vicryl 5.0
auto-regulated electric blanket Harvard Apparatus 50-7087-F
bluetack for capillary fixation UHU Patafix
electronic balance Denver Instrument MXX-2001
glass capillaries Harvard Apparatus GC150F-15 inner diameter 0.86 mm
outer diameter 1.5 mm
isoflurane vaporizer Phymep V100
micropipette puller Sutter Instrument Company P-97
needle 26 G BD microbalance 300300
non absorbable suturing thread Peters surgical Filapeau 4.0
stereotaxic frame David Kopf instruments Model 902
surgical equipment Kent scientific clamp, microscissors, thin scissors
syringe 20 mL TERUMO Thermofisher 11866071

Referências

  1. Rincon, F., Rossenwasser, R. H., Dumont, A. The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery. 73 (2), 212-222 (2013).
  2. Sandvei, M. S., et al. Incidence and mortality of aneurysmal subarachnoid hemorrhage in two Norwegian cohorts, 1984-2007. Neurology. 77 (20), 1833-1839 (2011).
  3. van Gijn, J., Kerr, R. S., Rinkel, G. J. Subarachnoid haemorrhage. Lancet. 369 (9558), 306-318 (2007).
  4. Solenski, N. J., et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Critical Care Medicine. 23 (6), 1007-1017 (1995).
  5. Cahill, J., Calvert, J. W., Zhang, J. H. Mechanisms of early brain injury after subarachnoid hemorrhage. Journal of Cerebral Blood Flow & Metabolism. 26 (11), 1341-1353 (2006).
  6. Huang, J., van Gelder, J. M. The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery. 51 (5), 1101-1107 (2002).
  7. Rabinstein, A. A. Secondary brain injury after aneurysmal subarachnoid haemorrhage: more than vasospasm. Lancet Neurology. 10 (7), 593-595 (2011).
  8. Kivisaari, R. P., et al. MR Imaging After Aneurysmal Subarachnoid Hemorrhage and Surgery: A Long-term Follow-up Study. American Journal of Neuroradiology. 22 (6), 1143-1148 (2001).
  9. Mayberg, M. R., et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 25 (11), 2315-2328 (1994).
  10. Dankbaar, J. W., et al. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 51 (12), 813-819 (2009).
  11. Sehba, F. A., Hou, J., Pluta, R. M., Zhang, J. H. The importance of early brain injury after subarachnoid hemorrhage. Progress in Neurobiology. 97 (1), 14-37 (2012).
  12. Miller, B. A., Turan, N., et al. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res Int. 2014, 384342 (2014).
  13. Dreier, J. P., et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 129, 3224-3237 (2006).
  14. Mayer, S., et al. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology. 59 (11), 1750-1758 (2002).
  15. Al-Khindi, T., Macdonald, R. L., Schweizer, T. A. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 41 (8), 519-536 (2010).
  16. Macdonald, R. L., et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 43 (6), 1463-1469 (2012).
  17. Parra, A., et al. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurological Research. 24 (5), 510-516 (2002).
  18. Schuller, K., Buhler, D., Plesnila, N. A murine model of subarachnoid hemorrhage. Journal of Visualized Experiments. (81), e50845 (2013).
  19. Lin, C. L., et al. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. Journal of Neuroscience Methods. 123 (1), 89-97 (2003).
  20. Sabri, M., et al. Anterior circulation mouse model of subarachnoid hemorrhage. Brain Research. 1295, 179-185 (2009).
  21. Leclerc, J. L., et al. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Frontiers in Molecular Neuroscience. 11, 71 (2018).
  22. El Amki, M., et al. Long-Lasting Cerebral Vasospasm, Microthrombosis, Apoptosis and Paravascular Alterations Associated with Neurological Deficits in a Mouse Model of Subarachnoid Hemorrhage. Molecular Neurobiology. 55 (4), 2763-2779 (2018).
  23. Clavier, T., et al. Association between vasoactive peptide urotensin II in plasma and cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a potential therapeutic target. Journal of Neurosurgery. , 1-11 (2018).
  24. Kundra, S., Mahendru, V., Gupta, V., Choudhary, A. K. Principles of neuroanesthesia in aneurysmal subarachnoid hemorrhage. Journal of Anaesthesiology Clinical Pharmacology. 30 (3), 328-337 (2014).
  25. Schertz, M., et al. Incidence and Mortality of Spontaneous Subarachnoid Hemorrhage in Martinique. PLOS ONE. 11 (5), 0155945 (2016).
  26. Lin, C. -. L., et al. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. Journal of Neuroscience Methods. 123 (1), 89-97 (2003).
  27. Prunell, G. F., Mathiesen, T., Diemer, N. H., Svendgaard, N. -. A. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 52 (1), 165-176 (2003).
  28. Turowski, B., et al. New angiographic measurement tool for analysis of small cerebral vessels: application to a subarachnoid haemorrhage model in the rat. Neuroradiology. 49 (2), 129-137 (2007).
  29. Boyko, M., et al. The neuro-behavioral profile in rats after subarachnoid hemorrhage. Brain Research. 1491, 109-116 (2013).
  30. Muñoz-Sánchez, M. &. #. 1. 9. 3. ;., et al. Urotensinergic system genes in experimental subarachnoid hemorrhage. Medicina Intensiva (English Edition). 41 (8), 468-474 (2017).
  31. Delgado, T., Brismar, J., Svendgaard, N. A. Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke. 16 (4), 595-602 (1985).
  32. Solomon, R. A., Antunes, J. L., Chen, R., Bland, L., Chien, S. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke. 16 (1), 58-64 (1985).
  33. Ram, Z., Sahar, A., Hadani, M. Vasospasm due to massive subarachnoid haemorrhage-a rat model. Acta Neurochirurgica. 110 (3-4), 181-184 (1991).
  34. Glenn, T. C., et al. Subarachnoid hemorrhage induces dynamic changes in regional cerebral metabolism in rats. Journal of Neurotrauma. 19 (4), 449-466 (2002).
  35. Gules, I., Satoh, M., Clower, B. R., Nanda, A., Zhang, J. H. Comparison of three rat models of cerebral vasospasm. American Journal of Physiology-Heart and Circulatory Physiology. 283 (6), 2551-2559 (2002).
  36. Sabri, M., et al. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neurociência. 224, 26-37 (2012).
  37. Jeon, H., Ai, J., Sabri, M., Tariq, A., Macdonald, R. Learning deficits after experimental subarachnoid hemorrhage in rats. Neurociência. 169 (4), 1805-1814 (2010).
  38. Silasi, G., Colbourne, F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behavioural Brain Researchearch. 198 (2), 380-387 (2009).
  39. Bederson, J. B., Germano, I. M., Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 26 (6), 1086-1092 (1995).
  40. Bederson, J. B., et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 42 (2), 352-362 (1998).
  41. Park, I. -. S., et al. Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. Journal of Neuroscience Methods. 172 (2), 195-200 (2008).
  42. Vanden Bergh, W., et al. Magnetic resonance imaging in experimental subarachnoid haemorrhage. Acta Neurochirurgica. 147 (9), 977-983 (2005).
  43. Peng, J., et al. LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biology. 21, 101121 (2019).
  44. Okada, T., et al. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice. Molecular Neurobiology. 56 (2), 976-985 (2019).
  45. Tiebosch, I. A., et al. Progression of brain lesions in relation to hyperperfusion from subacute to chronic stages after experimental subarachnoid hemorrhage: a multiparametric MRI study. Cerebrovascular Diseases. 36 (3), 167-172 (2013).
  46. Weidauer, S., Vatter, H., Dettmann, E., Seifert, V., Zanella, F. E. Assessment of vasospasm in experimental subarachnoid hemorrhage in rats by selective biplane digital subtraction angiography. Neuroradiology. 48 (3), 176-181 (2006).
  47. Lee, J. Y., Huang, D. L., Keep, R., Sagher, O. Characterization of an improved double hemorrhage rat model for the study of delayed cerebral vasospasm. Journal of Neuroscience Methods. 168 (2), 358-366 (2008).
  48. Cai, J., et al. A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: a study with synchrotron radiation angiography. PloS one. 7 (3), 33366 (2012).
  49. Piepgras, A., Thome, C., Schmiedek, P. Characterization of an anterior circulation rat subarachnoid hemorrhage model. Stroke. 26 (12), 2347-2352 (1995).
  50. Rosenberg, G. A., Mun-Bryce, S., Wesley, M., Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21 (5), 801-807 (1990).
  51. Raslan, F., et al. A modified double injection model of cisterna magna for the study of delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Experimental & Translational Stroke Medicine. 4 (1), 23 (2012).
  52. Cai, J., et al. A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: a study with synchrotron radiation angiography. PLoS One. 7 (3), 33366 (2012).
  53. Lee, J. Y., Sagher, O., Keep, R., Hua, Y., Xi, G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 65 (2), 331-343 (2009).
  54. Guresir, E., et al. The effect of common carotid artery occlusion on delayed brain tissue damage in the rat double subarachnoid hemorrhage model. Acta Neurochir (Wien). 154 (1), 11-19 (2012).
  55. Vatter, H., et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 58 (6), 1190-1197 (2006).
  56. Leonardo, C. C., Robbins, S., Doré, S. Translating basic science research to clinical application: models and strategies for intracerebral hemorrhage. Frontiers in Neurology. 3, 85 (2012).
  57. Feiler, S., Friedrich, B., Schöller, K., Thal, S. C., Plesnila, N. Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. Journal of Neuroscience Methods. 190 (2), 164-170 (2010).
  58. Westermaier, T., Jauss, A., Eriskat, J., Kunze, E., Roosen, K. Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. Journal of Neurosurgery. 110 (5), 996-1002 (2009).
  59. van Lieshout, J. H., et al. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurgical Review. 41 (4), 917-930 (2018).
  60. Conzen, C., et al. The Acute Phase of Experimental Subarachnoid Hemorrhage: Intracranial Pressure Dynamics and Their Effect on Cerebral Blood Flow and Autoregulation. Translational Stroke Research. 10 (5), 566-582 (2019).
  61. Connolly, E. S., et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 43 (6), 1711-1737 (2012).

Play Video

Citar este artigo
Pedard, M., El Amki, M., Lefevre-Scelles, A., Compère, V., Castel, H. Double Direct Injection of Blood into the Cisterna Magna as a Model of Subarachnoid Hemorrhage. J. Vis. Exp. (162), e61322, doi:10.3791/61322 (2020).

View Video