La barrière hémato-encéphalique (BHE) peut être temporairement perturbée par des ultrasons focalisés médiés par microbulles (FUS). Ici, nous décrivons un protocole étape par étape pour l’ouverture BHE à haut débit in vivo à l’aide d’un système FUS modulaire accessible aux experts non-ultrasons.
La barrière hémato-encéphalique (BHE) a été un obstacle majeur pour le traitement de diverses maladies du cerveau. Les cellules endothéliales, reliées par des jonctions serrées, forment une barrière physiologique empêchant les grosses molécules (>500 Da) de pénétrer dans le tissu cérébral. L’ultrason focalisé médié par microbulles (FUS) peut être employé pour induire une ouverture locale transitoire de BBB, permettant aux drogues plus grandes d’entrer dans le parenchyme de cerveau.
En plus des dispositifs cliniques à grande échelle pour l’application clinique, la recherche préclinique pour l’évaluation de la réponse au traitement des candidats médicaments nécessite des configurations d’échographie dédiées aux petits animaux pour l’ouverture ciblée de la BHE. De préférence, ces systèmes permettent des flux de travail à haut débit avec une précision spatiale élevée ainsi qu’une surveillance intégrée de la cavitation, tout en étant rentables en termes d’investissement initial et de coûts d’exploitation.
Ici, nous présentons un système FUS stéréotaxique de petit animal guidé par bioluminescence et par rayons X qui est basé sur des composants disponibles dans le commerce et répond aux exigences susmentionnées. Un accent particulier a été mis sur un degré élevé d’automatisation facilitant les défis généralement rencontrés dans les études précliniques d’évaluation des médicaments à volume élevé. Des exemples de ces défis sont la nécessité d’une normalisation afin d’assurer la reproductibilité des données, de réduire la variabilité intragroupe, de réduire la taille de l’échantillon et, par conséquent, de se conformer aux exigences éthiques et de réduire la charge de travail inutile. Le système BHE proposé a été validé dans le cadre d’essais d’administration de médicaments facilités par ouverture de BBB sur des modèles de xénogreffe dérivés du patient de glioblastome multiforme et de gliome diffus de midline.
La barrière hémato-encéphalique (BHE) est un obstacle majeur à l’administration de médicaments dans le parenchyme cérébral. La plupart des médicaments thérapeutiques qui ont été développés ne franchissent pas la BHE en raison de leurs paramètres physico-chimiques (par exemple, lipphilie, poids moléculaire, accepteurs de liaison hydrogène et donneurs) ou ne sont pas conservés en raison de leur affinité pour les transporteurs d’efflux dans le cerveau1,2. Le petit groupe de médicaments qui peuvent traverser la BHE sont généralement de petites molécules lipophiles, qui ne sont efficaces que dans un nombre limité de maladies du cerveau1,2. En conséquence, pour la majorité des maladies du cerveau, les options de traitement pharmacologique sont limitées et de nouvelles stratégies d’administration de médicaments sont nécessaires3,4.
L’échographie thérapeutique est une technique émergente qui peut être utilisée pour différentes applications neurologiques telles que la perturbation de la BHE (BBBD), la neuromodulation et l’ablation4,5,6,7. Afin d’obtenir une ouverture BBB avec un émetteur ultrasonoreal extracorporeal à travers le crâne, ultrasons focalisés (FUS) est combiné avec des microbulles. Fus microbulles-négociés entraîne une biodisponibilité accrue des médicaments dans le parenchyme cérébral5,8,9. En présence d’ondes sonores, les microbulles commencent à osciller en initiant la transcytose et la perturbation des jonctions serrées entre les cellules endothéliales de la BHE, permettant le transport paracellulaire de molécules plus grosses10. Des études antérieures ont confirmé la corrélation entre l’intensité de l’émission acoustique et l’impact biologique sur l’ouverture BBB11,12,13,14. FUS en association avec des microbulles a déjà été utilisé dans des essais cliniques pour le traitement du glioblastome en utilisant le témozolomide ou la doxorubicine liposomale comme agent chimiothérapeutique, ou pour le traitement de la maladie d’Alzheimer et de la sclérose latérale amyotrophique5,9,15,16.
Puisque l’ouverture de BBB négociée par ultrasons a comme conséquence des possibilités entièrement nouvelles pour la pharmacothérapie, la recherche préclinique pour l’application clinique est nécessaire pour évaluer la réponse de thérapie des candidats médicamenteux sélectionnés. Cela nécessite généralement un flux de travail à haut débit avec une précision spatiale élevée et de préférence une détection de cavitation intégrée pour la surveillance de l’ouverture BHE ciblée avec une reproductibilité élevée. Si possible, ces systèmes doivent être rentables en termes d’investissement initial et de coûts d’exploitation afin d’être évolutifs en fonction de la taille de l’étude. La plupart des systèmes FUS précliniques sont combinés avec l’IRM pour le guidage d’image et la planification du traitement15,17,18,19. Bien que l’IRM donne des informations détaillées sur l’anatomie et le volume de la tumeur, il s’agit d’une technique coûteuse, qui est généralement effectuée par des opérateurs formés / qualifiés. De plus, l’IRM à haute résolution n’est pas toujours disponible pour les chercheurs dans les installations précliniques et nécessite de longs temps de balayage par animal, ce qui la rend moins adaptée aux études pharmacologiques à haut débit. Il convient de noter que, pour la recherche préclinique dans le domaine de la neuro-oncologie, en particulier les modèles tumoraux infiltrants, la possibilité de visualiser et de cibler la tumeur est essentielle pour la réussite du traitement20. Actuellement, cette exigence n’est remplie que par IRM ou par des tumeurs transduites avec une photoprotéine, permettant la visualisation avec imagerie par bioluminescence (BLI) en combinaison avec l’administration du substrat photoprotéique.
Les systèmes FUS guidés par IRM utilisent souvent un bain-marie pour assurer la propagation des ondes ultrasonores pour les applications transcrâniennes, par lequel la tête de l’animal est partiellement immergée dans l’eau, les systèmes dits « ascendants »15,17,18. Bien que ces conceptions fonctionnent généralement bien dans les études sur les petits animaux, elles constituent un compromis entre les temps de préparation des animaux, la portabilité et les normes d’hygiène réalistes et maintenables pendant l’utilisation. Comme alternative à l’IRM, d’autres méthodes de guidage pour la navigation stéréotaxique englobent l’utilisation d’un atlas anatomique de rongeur21,22, 23,d’une observation visuelle assistée par pointeur laser24,d’un dispositif de balayage mécanique assisté par sténopé25,ou D’un BLI26. La plupart de ces conceptions sont des systèmes « top-down » dans lesquels le transducteur est placé sur le dessus de la tête de l’animal, avec l’animal dans une position naturelle. Le flux de travail « descendant » consiste soit en un bain-marie22,25,26, soit en un cône rempli d’eau21,24. L’avantage d’utiliser un transducteur à l’intérieur d’un cône fermé est l’encombrement plus compact, le temps de configuration plus court et les possibilités de décontamination simples simplifiant l’ensemble du flux de travail.
L’interaction du champ acoustique avec les microbulles dépend de la pression et va des oscillations de faible amplitude (appelées cavitation stable) à l’effondrement transitoire des bulles (appelé cavitation inertielle)27,28. Il existe un consensus établi selon lequel l’échographie-BBBD nécessite une pression acoustique bien supérieure au seuil de cavitation stable pour obtenir une BBBD réussie, mais inférieure au seuil de cavitation inertielle, qui est généralement associé à des dommages vasculaires / neuronaux29. La forme la plus courante de surveillance et de contrôle est l’analyse du signal acoustique (rétro-)dispersé à l’aide de la détection de cavitation passive (PCD), comme le suggèrent McDannold et al.12. PCD s’appuie sur l’analyse des spectres de Fourier des signaux d’émission de microbulles, dans lesquels la force et l’apparence des caractéristiques de cavitation stables (harmoniques, sous-harmoniques et ultraharmoniques) et des marqueurs de cavitation inertielle (réponse à large bande) peuvent être mesurées en temps réel.
Une analyse PCD « taille unique » pour un contrôle précis de la pression est compliquée en raison de la polydispersité de la formulation de microbulles (l’amplitude d’oscillation dépend fortement du diamètre de la bulle), des différences dans les propriétés de la coque de la bulle entre les marques et de l’oscillation acoustique, qui dépend fortement de la fréquence et de la pression30,31,32. En conséquence, de nombreux protocoles de détection pcd différents ont été suggérés, qui ont été adaptés à des combinaisons particulières de tous ces paramètres et ont été utilisés dans divers scénarios d’application (allant de l’expérimentation in vitro sur des protocoles de petits animaux à PCD pour un usage clinique) pour la détection de cavitation robuste et même pour le contrôle rétroactif de rétroaction de la pression11,14,30, 31,32,33,34,35. Le protocole PCD utilisé dans la portée de cette étude est dérivé directement de McDannold et al.12 et surveille l’émission harmonique pour la présence d’une cavitation stable et d’un bruit à large bande pour la détection de la cavitation inertielle.
Nous avons développé un système FUS de neuronavigation guidé par l’image pour l’ouverture transitoire de la BHE afin d’augmenter l’administration de médicaments dans le parenchyme cérébral. Le système est basé sur des composants disponibles dans le commerce et peut être facilement adapté à plusieurs modalités d’imagerie différentes, en fonction des techniques d’imagerie disponibles dans l’installation pour animaux. Étant donné que nous avons besoin d’un flux de travail à haut débit, nous avons choisi d’utiliser les rayons X et le BLI pour le guidage d’image et la planification du traitement. Les cellules tumorales transduites avec une photoprotéine (par exemple, luciférase) conviennent à l’imagerie BLI20. Après l’administration du substrat photoprotéique, les cellules tumorales peuvent être surveillées in vivo et la croissance et l’emplacement de la tumeur peuvent êtredéterminés 20,36. BLI est une modalité d’imagerie à faible coût, il permet de suivre la croissance tumorale au fil du temps, il a des temps de balayage rapides et il est bien corrélé avec la croissance tumorale mesurée par IRM36,37. Nous avons choisi de remplacer le bain-marie par un cône rempli d’eau fixé au transducteur pour permettre la flexibilité de déplacer librement la plate-forme sur laquelle le rongeur est monté8,24. La conception est basée sur une plate-forme détachable équipée de l’intégration (I) de la plate-forme stéréotaxique des petits animaux (II) marqueurs fiduciaux avec compatibilité aux rayons X et à l’image optique (III) masque d’anesthésie rapide-détachable, et (IV) système de chauffage animal à température réglée intégrée. Après l’induction initiale de l’anesthésie, l’animal est monté dans une position précise sur la plate-forme où il reste pendant toute la procédure. Par conséquent, l’ensemble de la plate-forme passe toutes les stations du flux de travail de l’ensemble de l’intervention, tout en maintenant un positionnement précis et reproductible et une anesthésie soutenue. Le logiciel de contrôle permet la détection automatique des marqueurs fiduciaux et enregistre automatiquement tous les types d’images et de modalités d’image (c’est-à-dire micro-CT, rayons X, BLI et imagerie par fluorescence) dans le cadre de référence de la plate-forme stéréotaxique. À l’aide d’une procédure d’étalonnage automatique, la distance focale du transducteur à ultrasons est précisément connue à l’intérieur, ce qui permet la fusion automatique de la planification interventionnelle, de la livraison acoustique et de l’analyse d’imagerie de suivi. Comme le montrent les figures 1 et 2,cette configuration offre un degré élevé de flexibilité pour concevoir des flux de travail expérimentaux dédiés et permet une manipulation entrelacée de l’animal à différentes stations, ce qui facilite les expériences à haut débit. Nous avons employé cette technique pour la livraison réussie de drogue dans les xénogreffes de souris du glioma à haute teneur tel que le glioma diffus de midline.
Dans cette étude, nous avons développé un système FUS basé sur une image guidée rentable pour la perturbation transitoire de la BHE pour une administration accrue de médicaments dans le parenchyme cérébral. Le système a été en grande partie construit avec des composants disponibles dans le commerce et en conjonction avec les rayons X et BLI. La modularité de la conception proposée permet l’utilisation de plusieurs modalités d’imagerie pour la planification et l’évaluation dans les flux de travail à…
The authors have nothing to disclose.
Ce projet a été financé par le KWF-STW (Drug Delivery by Sonoporation in Childhood Diffuse Intrinsic Pontine Glioma et High-grade Glioma). Nous remercions Ilya Skachkov et Charles Mougenot pour leur contribution au développement du système.
1 mL luer-lock syringe | Becton Dickinson | 309628 | Plastipak |
19 G needle | Terumo Agani | 8AN1938R1 | |
23 G needle | Terumo Agani | 8AN2316R1 | |
3M Transpore surgical tape | Science applied to life | 7000032707 | or similar |
Arbitrary waveform generator | Siglent | n.a. | SDG1025, 25 MHz, 125 Msa/s |
Automated stereotact | in-house built | n.a. | Stereotact with all elements were in-house built |
Bruker In-Vivo Xtreme | Bruker | n.a. | Includes software |
Buffered NaCl solution | B. Braun Melsungen AG | 220/12257974/110 | |
Buprenorfine hydrochloride | Indivior UK limitd | n.a. | 0.324 mg |
Cage enrichment: paper-pulp smart home | Bio services | n.a. | |
Carbon filter | Bickford | NC0111395 | Omnicon f/air |
Ceramic spoon | n.a | n.a. | |
Cotton swabs | n.a. | n.a. | |
D-luciferin, potassium salt | Gold Biotechnology | LUCK-1 | |
Ethanol | VUmc pharmacy | n.a. | 70% |
Evans Blue | Sigma Aldrich | E2129 | |
Fresenius NaCl 0.9% | Fresenius Kabi | n.a. | NaCl 0.9 %, 1000 mL |
Histoacryl | Braun Surgical | n.a. | Histoacryl 0.5 mL |
Hydrophone | Precision Acoustics | n.a. | |
Insulin syringe | Becton Dickinson | 324825/324826 | 0.5 mL and 0.3 mL |
Isoflurane | TEVA Pharmachemie BV | 8711218013196 | 250 mL |
Ketamine | Alfasan | n.a. | 10 %, 10 mL |
Mouse food: Teklad global 18% protein rodent diet | Envigo | 2918-11416M | |
Neoflon catheter | Becton Dickinson | 391349 | 26 GA 0.6 x 19 mm |
Oscilloscope | Keysight technologies | n.a. | InfiniiVision DSOX024A |
Plastic tubes | Greiner bio-one | 210261 | 50 mL |
Power amplifier | Electronics & Innovation Ltd | 210L | Model 210L |
Preamplifier DC Coupler | Precision Acoustics | n.. | Serial number: DCPS94 |
Scissors | Sigma Aldrich | S3146-1EA | or similar |
Sedazine | AST Farma | n.a. | 2% |
SonoVue microbubbles | Bracco | n.a. | 8 µl/ml |
Sterile water | Fresenius Kabi | n.a. | 1000 mL |
Syringe | n.a. | n.a. | various syringes can be used |
Temgesic | Indivior UK limitd | n.a. | 0.3 mg/ml |
Transducer | Precision Acoustics | n.a. | 1 MHz |
Tweezers | Sigma Aldrich | F4142-1EA | or similar |
Ultrasound gel | Parker Laboratories Inc. | 01-02 | Aquasonic 100 |
Vidisic gel | Bausch + Lomb | n.a. | 10 g |