Мы описываем методы флуоресценции фотоактивации для анализа аксонального переноса нейрофилаций в одиночных миелинированных аксонах периферических нервов от трансгенных мышей, которые выражают фотоактивируемый белок нейрофиламента.
Нейрофиламентные белковые полимеры перемещаются по аксонам в медленном компоненте аксонального транспорта со средней скоростью 0,35-3,5 мм в день. До недавнего времени изучение этого движения на месте было возможно только с помощью радиоизотопного пульсового маркировки, что позволяет анализировать аксональный транспорт в целых нервах с временным разрешением дней и пространственным разрешением миллиметров. Для изучения нейрофиламента транспорта на месте с более высоким висовым и пространственным разрешением, мы разработали hThy1-paGFP-NFM трансгенной мыши, которая выражает нейрофиламент белка M помечены фотоактивируемым GFP в нейронах. Здесь мы описываем флуоресценции фотоактивности пульс-побег и импульс-распространения методов для анализа нейрофиламента транспорта в одной миелинированной аксонов тибиальных нервов от этих мышей ex vivo. Изолированные сегменты нерва поддерживаются на стадии микроскопа перфузией с кислородом солевым раствором и изображения спиннинг диска конлокальной флуоресценции микроскопии. Фиолетовый свет используется для активации флуоресценции в коротком аксональном окне. Флуоресценция в активированных и фланговых областях анализируется с течением времени, что позволяет изучить транспортировку нейрофиламента с висовым и пространственным разрешением на порядок минут и микрон, соответственно. Математическое моделирование может быть использовано для извлечения кинетических параметров нейрофильтра транспорта, включая скорость, направленность и приостановощающее поведение из полученных данных. Методы пульса-побега и пульс-распространения также могут быть адаптированы для визуализации нейрофильтрамента транспорта в других нервах. С развитием дополнительных трансгенных мышей, эти методы могут также быть использованы для изображения и анализа аксональная транспорт других цитоскелетных и цитозолических белков в аксонах.
Аксональный транспорт нейрофиламентов был впервые продемонстрирован в 1970-х годах радиоизотопной пульсовой маркировкой1. Этот подход дал огромное количество информации о нейрофильтра транспорта in vivo, но он имеет относительно низкий пространственный и временное разрешение, как правило, на порядок миллиметров и дней в лучшем случае2. Кроме того, радиоизотопная маркировка пульса является косвенным подходом, который требует инъекций и жертвоприношения нескольких животных для создания единого временного курса. С открытием флуоресцентных белков и достижений в флуоресценции микроскопии в 1990-х годов, впоследствии стало возможным изображение нейрофильтра транспорта непосредственно в культивируемых нейронов на шкале времени секунд или минут и с суб-микрометрового пространственного разрешения, предоставляя гораздо больше понимания механизма движения3. Эти исследования показали, что нейрофиламентные полимеры в аксонах быстро и периодически перемещаются как в антероградных, так и в ретроградных направлениях вдоль микротрубочек, движимых микротрубочками моторных белков. Тем не менее, нейрофиламенты дифракционно-ограниченные структуры всего 10 нм в диаметре, которые, как правило, расположены отдельно от своих соседей только на десятки нанометров; Таким образом, полимеры могут быть отслежены только в культивируемых нейронов, которые содержат редко распределенных нейрофиламентов, так что движущиеся полимеры могут быть решены от своих соседей4. Таким образом, в настоящее время невозможно отследить одиночные нейрофиламенты в аксонах, которые содержат обильные полимеры нейрофиламента, такие как миелинизированные аксоны.
Для анализа аксональной транспортировки нейрофилаций в нейрофиламент богатых аксонов с использованием флуоресценции микроскопии, мы используем флуоресценции фотоактивности импульс-побег метод, который мы разработали для изучения долгосрочного паузы поведение нейрофилаций в культивируемых нервных клеток4,5. Нейрофиламенты, помеченные фотоактивируемым флуоресцентным нейрофильтрным синтезом белка, активируются в коротком сегменте аксона, а затем скорость отхода этих нитей из активированной области количественно измеряется путем измерения флуоресценции распада с течением времени. Преимуществом такого подхода является то, что это анализ нейрофильтрации на уровне населения, который может применяться в времени минут или часов без необходимости отслеживать движение отдельных полимеров нейрофиламента. Например, мы использовали этот метод для анализа кинетики нейрофильтрации транспорта в миелинирующих культур6.
Недавно мы описали развитие hThy1-paGFP-NFM трансгенной мыши, которая выражает низкий уровень paGFP-тегами нейрофильтр белка M (paGFP-NFM) в нейронах под контролем человека нейрон-специфический Thy1 промоутер7. Эта мышь позволяет анализировать нейрофильтр транспортировки на месте с помощью флуоресценции микроскопии. В этой статье мы описываем экспериментальные подходы для анализа нейрофильтра транспорта в миелинированных аксонов тибиальных нервов от этих мышей с использованием двух подходов. Первый из этих подходов является описанным выше методом пульс-побега. Этот метод может генерировать информацию о приостановке поведения нейрофиламентов, но слеп к направлению, в котором нити отходят от активированной области, и, следовательно, не позволяет измерить чистую направленность и скорость транспортировки8. Второй из этих подходов представляет собой новый метод пульса распространения, в котором мы анализируем не только потерю флуоресценции из активированного региона, но и переходное увеличение флуоресценции в двух фланговых окнах, через которые перемещаются флуоресцентные нити при отходе от активированной области как в ангерозном, так и в ретроградном направлениях. В обоих подходах такие параметры нейрофильтра, как средняя скорость, чистая направленность и приостановление поведения, могут быть получены с помощью математического анализа и моделирования изменений флуоресценции в измерительных окнах. Рисунок 3 иллюстрирует эти два подхода.
Этот протокол демонстрирует вскрытие и подготовку нерва, активацию и визуализацию флуоресценции paGFP, а также количественную оценку транспортировки нейрофиламента из приобретенных изображений с использованием пакета распределения FIJI ImageJ9. Мы используем тибиальный нерв, потому что он длинный (несколько см) и не ветвиется; однако, в принципе любой нерв, выражаюющий paGFP-NFM подходит для использования с этой техникой, если он может быть рассечен и де-шейт без повреждения аксонов.
Необходимо проявлять осторожность при анализе экспериментов по пульсу и пульс-распространению, поскольку существует значительный потенциал для введения ошибки во время постобработки, главным образом во время коррекции плоского поля, выравнивания изображения и коррекции отбеливате?…
The authors have nothing to disclose.
Авторы хотели бы поблагодарить Паулу Монсма за обучение и помощь в проведении конфокальной микроскопии и рассечения tibial нерва, а также доктора Ацуко Учиды, Хлои Дюгер и Сану Чаханде за помощь в работе с мышью. Эта работа была частично поддержана совместным Национальным научным фондом грантов IOS1656784 А.Б. и IOS1656765 p.J., и Национальные институты здравоохранения Гранты R01 NS038526, P30 NS104177 и S10 OD010383 до A.B. N.P.B. была поддержана стипендией от Университета штата Огайо президента постдокторской программы ученых.
14 x 22 Rectangle Gasket 0.1mm | Bioptechs | 1907-1422-100 | inner gasket |
2-deoxy-D-glucose | Sigma | D6134 | |
30mm Round Gasket w/ Holes | Bioptechs | 1907-08-750 | outer gasket |
35 x 10mm dish | Thermo Fisher | 153066 | dissection dishes |
40mm round coverslips | Bioptechs | 40-1313-0319 | |
60mL syringe – Luer-lock tip | BD | 309653 | |
Andor Revolution WD spinning-disk confocal system | Andor | outfitted with Perfect Focus and FRAPPA systems | |
Calcium chloride | Fisher | C79 | |
Coverslips | Fisher | 12-541-B | for fluorescein slide |
D-(+)-glucose solution | Sigma | G8769 | |
Dissecting pins | Fine Science Tools | 26001-70 | |
Dissection forceps | Fine Science Tools | 11251-30 | fine tipped forceps |
Dissection microscope | Zeiss | 47 50 03 | |
Dissection pan with wax | Ginsberg Scientific | 568859 | |
Dissection scissors | Fine Science Tools | 14061-09 | initial dissection scissors |
FCS2 perfusion chamber | Bioptechs | 060319-2-03 | |
Fluorescein sodium | Fluka | 46960 | |
Inline solution heater | Warner Instruments | SH27-B | |
Laminectomy forceps | Fine Science Tools | 11223-20 | initial dissection forceps |
Magnesium sulfate | Sigma-Aldrich | M7506 | |
Microaqueduct slide | Bioptechs | 130119-5 | |
Microscope slides | Fisher | 12-544-3 | for fluorescein slide |
Microscope stage insert | Applied Scientific Instrumentation | I-3017 | |
Objective heater system | Okolab | Oko Touch with objective collar | |
Objective oil – type A | Nikon | discontinued | |
Plan Apo VC 100x 1.40 NA objective | Nikon | MRD01901 | |
Potassium chloride | Fisher | P217 | |
Potassium phosphate | Sigma-Aldrich | P0662 | |
Sodium bicarbonate | Sigma-Aldrich | S6297 | |
Sodium chloride | Sigma-Aldrich | S7653 | |
Sodium iodoacetate | Sigma-Aldrich | I2512 | |
Syringe pump | Sage Instruments | Model 355 | |
Tubing adapter – female | Small Parts Inc. | 1005109 | |
Tubing adapter – male | Small Parts Inc. | 1005012 | |
Tygon tubing | Bioptechs | 1/16" ID, 1/32" wall thickness | |
Vannas spring scissors | Fine Science Tools | 15018-10 | fine scissors |