L’électroporation double in utero permet de cibler les populations cellulaires qui sont séparées spatialement et temporellement. Cette technique est utile pour visualiser les interactions entre ces populations cellulaires à l’aide de protéines fluorescentes dans des conditions normales, mais aussi après des expériences fonctionnelles pour perturber les gènes d’intérêt.
L’électroporation in utero est une technique de transfert d’ADN in vivo largement utilisée pour étudier les mécanismes moléculaires et cellulaires sous-jacents à la corticogenèse des mammifères. Cette procédure tire parti des ventricules cérébraux pour permettre l’introduction de l’ADN d’intérêt et utilise une paire d’électrodes pour diriger l’entrée du matériel génétique dans les cellules qui tapissent le ventricule, les cellules souches neuronales. Cette méthode permet aux chercheurs d’étiqueter les cellules désirées et/ou de manipuler l’expression de gènes d’intérêt pour ces cellules. Il a plusieurs applications, y compris des tests ciblant la migration neuronale, le traçage des lignées et le pathfinding axonal. Une caractéristique importante de cette méthode est son contrôle temporel et régional, permettant le contournement des problèmes potentiels liés à la létalité embryonnaire ou à l’absence de souris conducteur cre spécifiques. Un autre aspect pertinent de cette technique est qu’elle contribue à réduire considérablement les limites économiques et temporelles qui impliquent la génération de nouvelles lignées de souris, qui deviennent particulièrement importantes dans l’étude des interactions entre les types de cellules qui proviennent de zones éloignées du cerveau à différents âges de développement. Nous décrivons ici une stratégie de double électroporation qui permet de cibler les populations cellulaires qui sont séparées spatialement et temporellement. Grâce à cette approche, nous pouvons étiqueter différents sous-types de cellules à différents endroits avec des protéines fluorescentes sélectionnées pour les visualiser, et/ou nous pouvons manipuler les gènes d’intérêt exprimés par ces différentes cellules au moment opportun. Cette stratégie améliore le potentiel de l’électroporation in utero et fournit un outil puissant pour étudier le comportement des populations cellulaires séparées temporellement et spatialement qui migrent pour établir des contacts étroits, ainsi que des interactions à long terme par le biais de projections axonales, réduisant les coûts temporels et économiques.
Le cortex cérébral est une structure très complexe et complexement organisée. Pour atteindre un tel degré d’organisation, les neurones de projection cortical passent par des processus développementaux complexes qui nécessitent leur génération temporelle, la migration vers leur destination finale dans la plaque corticale, et l’établissement de connexions à courte et à longue portée1,2. Pendant longtemps, la façon classique d’étudier la corticogenèse a été basée sur l’utilisation de modèles de knock-out ou de knock-in murine de gènes d’intérêt. Toutefois, cette stratégie, et en particulier l’utilisation de souris knock-out conditionnelles, prend beaucoup de temps et coûte cher, et présente parfois des problèmes supplémentaires concernant l’existence de la redondance génétique ou l’absence de conducteurs spécifiques CRE, entre autres questions. Une des approches qui ont surgi pour essayer de résoudre ces problèmes et qui est aujourd’hui largement utilisé pour étudier le développement cortical est in utero électroporation3,4. L’électroporation in utero est une technique utilisée pour la transgenèse somatique, permettant le ciblage in vivo des cellules souches neuronales et de leur progéniture. Cette méthode peut être utilisée pour étiqueter les cellules par l’expression des protéines fluorescentes5,6, pour la manipulation des gènes in vivo (c.-à-d. gain ou perte d’essais de fonction)7,8,9, pour isoler les cortices électroporated dans vitro et les cellules de culture8,10. En outre, l’électroporation in utero permet le contrôle temporel et régional de la zone ciblée. Cette technique a de nombreuses applications et a été largement utilisé pour étudier la migration neuronale, la division des cellules souches, la connectivité neuronale, et d’autres sujets8,9,11,12.
Le manuscrit actuel décrit l’utilisation d’une variante d’électroporation in utero, appelée double électroporation in utero, pour analyser les interactions des cellules dans le cortex cérébral avec différentes origines temporelles et spatiales. Ces études sont extrêmement complexes à compléter lorsque vous utilisez des modèles murins parce qu’ils nécessitent l’utilisation combinée de plusieurs lignes transgéniques. Certaines des applications du protocole décrites dans cet article comprennent l’étude des interactions étroites entre les cellules voisines, ainsi que les interactions entre les cellules éloignées par le biais de projections à long terme. La méthode exige l’exécution de deux chirurgies d’électroporation in utero indépendantes, séparées temporellement et spatialement, sur les mêmes embryons pour cibler différentes populations cellulaires d’intérêt. L’avantage de cette approche est la possibilité de manipuler la fonction génique dans un ou les deux types de neurones à l’aide d’animaux de type sauvage. En outre, ces expériences fonctionnelles peuvent être combinées avec l’expression de protéines fluorescentes cytoplasmiques ou membranaires pour visualiser la morphologie fine des cellules ciblées, y compris les dendrites et les axones, et analyser les différences possibles dans les interactions cellulaires par rapport à un contrôle (c.-à-d. les cellules étiquetées uniquement avec la protéine fluorescente).
Le protocole délimité ici est axé sur l’étude des interactions cellulaires à l’intérieur du néocortex, mais cette stratégie pourrait également être utilisée pour examiner les interactions avec les zones extracorticales qui peuvent être ciblées à l’aide d’électroporation in utero, comme le subpallium ou le thalamus13,14, ou les interactions cellule-cellule dans d’autres structures, comme le cervelet15. Le ciblage de différentes zones est basé sur l’orientation des électrodes et sur le ventricule où l’ADN est injecté (latéral, troisième ou quatrième). Avec la stratégie décrite ici, nous pouvons étiqueter un nombre important de cellules, ce qui est utile pour évaluer les changements généraux dans la connectivité / innervation dans les expériences fonctionnelles. Néanmoins, pour étudier les changements fins dans la connectivité, on peut utiliser des versions modifiées de l’électroporation in utero pour obtenir l’étiquetage clairsemé et identifier les cellules simples16. En résumé, l’électroporation in utero est une méthode polyvalente qui permet de cibler les populations cellulaires séparées temporellement et spatialement et d’étudier leurs interactions en détail, soit dans des conditions de contrôle, soit combinées à des expériences fonctionnelles, réduisant considérablement les coûts temporels et économiques.
L’étude des interactions cellule-cellule in vivo dans les régions à forte densité cellulaire comme le cortex cérébral est une tâche complexe. Les approches traditionnelles, y compris l’utilisation d’anticorps pour étiqueter les neurites, ne conviennent pas en raison de l’absence de marqueurs spécifiques pour différentes populations cellulaires. L’utilisation de modèles murins transgéniques, où un type de cellule particulier exprime une protéine fluorescente, est utile pour visualiser les processus…
The authors have nothing to disclose.
Les auteurs remercient Cristina Andrés Carbonell et les membres de l’établissement de soins aux animaux de l’Universidad de Valencia pour leur assistance technique. Nous tenons également à remercier Isabel Fariñas et Sacramento R. Ferrón pour les réactifs et le partage de leur équipement avec nous. I.M.W est financé par un contrat de Garantie Juvenil de la Conselleria de Educación de Valencia (GJIDI/2018/A/221), D.dA.D est financé par le Ministerio de Ciencia, Innovación y Universidades (MICINN) (FPI-PRE2018-086150). C.Gil-Sanz est titulaire d’une subvention De Ramón y Cajal (RYC-2015-19058) du Ministerio de Ciencia espagnol, Innovación y Universidades (MICINN). Ces travaux ont été financés RYC-2015-19058 et SAF2017-82880-R (MICINN).
Ampicillin sodium salt | Sigma-Aldrich | A9518-25G | |
Aspirator tube | Sigma-Aldrich | A5177-5EA | |
Baby-mixter hemostat (perfusion) | Fine Science Tools (FST) | 13013-14 | |
Borosilicate glass capillary | WPI | 1B100-6 | |
Buprenorphine (BUPREX 0,3 mg/ml) | Rb Pharmaceuticals Limited | 921425 | |
CAG-BFP plasmid | Kindly provided by U.Müller Lab | ||
CAG-EGFP plasmid | Kindly provided by U.Müller Lab | ||
CAG-mCherry plasmid | Kindly provided by U.Müller Lab | ||
CAG-mtdTomato-2A-nGFP plasmid | Kindly provided by U.Müller Lab | ||
Confocal microscope | Olympus | FV10i | |
Cotton Swabs | BFHCVDF | ||
Cyanoacrylate glue | B. Braun Surgical | 1050044 | |
Dissecting scope | Zeiss | stemi 305 | |
Dumont Forceps #5 Fine Forceps | Fine Science Tools (FST) | 11254-20 | |
ECM830 Square Wave Electroporator | BTX | 45-0052 | |
Electric Razor | Oster | 76998 | |
Endotoxin-free TE buffer | QIAGEN | 1018499 | |
Ethanol wipes | BFHCVDF | ||
Extra Fine Graefe Forceps | Fine Science Tools (FST) | 11150-10 | |
Eye ointment | Alcon | 682542.6 | |
Fast Green dye | Sigma-Aldrich | F7252-5G | |
Fine Scissors | Fine Science Tools (FST) | 14069-09 | |
Fluorescence LEDs | CoolLED | pE-300-W | |
Genopure Plasmid Maxi Kit | Roche | 3143422001 | |
Halsted-Mosquito Hemostats (suture) | Fine Science Tools (FST) | 91308-12 | |
Heating Pad | UFESA | AL5514 | |
Inverted epifluorescence microscope | Nikon | Eclipse TE2000-S | |
Iodine wipes | Lorsoul | ||
Isofluorane vaporizer | Flow-Meter | A15B5001 | |
Isoflurane | Karizoo | 586259 | |
Ketamine (Anastemine) | Fatro Ibérica SL | 583889-2 | |
Kimtech precision wipes | Kimberly-Clark | 7252 | |
LB (Lennox) Agar GEN | Labkem | AGLB-00P-500 | |
LB (Lennox) broth GEN | Labkem | LBBR-00P-500 | |
Low-melting point agarose | Fisher Scientific | BP165-25 | |
Medetomidine (Sedator) | Dechra | 573749.2 | |
Microscope coverslips | Menel-Gläser | 15747592 | |
Microscope Slides | Labbox | SLIB-F10-050 | |
Mounting medium | Electron Microscopy Sciences | 17984-25 | |
Mutiwell plates (24) | SPL Life Sciences | 32024 | |
Mutiwell plates (48) | SPL Life Sciences | 32048 | |
NaCl (for saline solution) | Fisher Scientific | 10112640 | |
Needle 25 G (BD Microlance 3) | Becton, Dickinson and Company | 300600 | |
Orbital incubator S150 | Stuart Scientific | 5133 | |
P Selecta Incubator | J. P. Selecta, s.a. | 0485472 | |
Paraformaldehyde | PanReac AppliedChem | A3813 | |
Penicillin-Streptomycin | Sigma -Aldrich | P4333 | |
Peristaltic perfusion pump | Cole-Parmer | EW-07522-30 | |
Platinum Tweezertrode, 5 mm Diameter | Btx | 45-0489 | |
Reflex Skin Closure System – 7mm Clips, box of 100 | AgnThos | 203-1000 | |
Reflex Skin Closure System – Clip Applyer, 7mm | AgnThos | 204-1000 | |
Ring Forceps | Fine Science Tools (FST) | 11103-09 | |
Sodium azide | PanReac AppliedChem | 122712-1608 | |
Surgical absorbent pad (steryle) | HK Surgical | PD-M | |
Suture (Surgicryl PGA 6-0) | SMI Suture Materials | BYD11071512 | |
Syringe 1ml (BD plastipak) | Becton, Dickinson and Company | 303172 | |
Tissue Culture Dish 100 x 20 mm | Falcon | 353003 | |
Vertical Micropipette Puller | Sutter Instrument Co | P-30 | |
Vertical microscope | Nikon | Eclipse Ni | |
Vibratome | Leica | VT1200S |