Здесь мы представляем модифицированный протокол CLIP-seq под названием FbioCLIP-seq с очисткой тандема FLAG-biotin для определения целей РНК-связывающих белков (RBPs) в клетках млекопитающих.
РНК и РНК-связывающие белки (РБП) контролируют несколько биологических процессов. Пространственное и временное расположение РНК и РРБ лежит в основе деликатного регулирования этих процессов. Разработана стратегия под названием CLIP-seq (перекрестное связывание и иммунопреципиентация) для захвата эндогенных белково-РНК-взаимодействий с УФ-перекрестными соединениями с последующим иммунопреципитацией. Несмотря на широкое использование традиционного метода CLIP-seq в исследовании RBP, метод CLIP ограничен наличием высококачественных антител, потенциальными загрязняющими веществами из copurified RBPs, требованием манипуляции изотопами и потенциальной потерей информации во время утомительной экспериментальной процедуры. Здесь мы описываем модифицированный метод CLIP-seq под названием FbioCLIP-seq с использованием тандема FLAG-biotin. Благодаря тандемной очистке и строгим условиям мытья удаляются почти все взаимодействующие РНК-связывающие белки. Таким образом, рнк, взаимодействующие косвенно при посредничестве этих copurified RBPs, также сокращаются. Наш метод FbioCLIP-seq позволяет эффективно обнаруживать прямые РНК, связанные с белком, без процедур SDS-PAGE и мембранной передачи без изотопов и без белка.
РНК и РНК-связывающие белки (РБП) контролируют различные клеточные процессы, включая сращивание, перевод, рибосомный биогенез, эпигенетическуюрегуляции и переход судьбы клеток 1,2,3,4,5,6. Тонкие механизмы этих процессов зависят от уникального пространственного и временного расположения РНК и РРБ. Поэтому важным шагом на пути к пониманию регулирования РНК на молекулярном уровне является выявление позиционной информации о связывающих участках РРБ.
Разработана стратегия, именуемая перекрестными соединениями и иммунопреципитацией (CLIP-seq) для захвата белково-РНК-взаимодействий с УФ-перекрестными соединениями с последующим иммунопреципитациейбелка интереса 7. Ключевой особенностью методологии является индукция ковалентных перекрестных связей между РНК-связывающим белком и его непосредственно связанными молекулами РНК (в пределах 1 евро) путемУФ-облучения 8. Следы RBP могут быть определены кластеризацией тегов CLIP и пиковым вызовом, разрешение которого обычно составляет 30–60 nt. Кроме того, обратный этап транскрипции CLIP может привести к indels (вставки или удаления) или замены кросс-связывающих сайтов, что позволяет идентифицировать белковые связывающие сайты на РНК при одном нуклеотидном разрешении. Трубопроводы, такие как Novoalign и CIMS, были разработаны для анализа результатов секвенирования высокой пропускной способности CLIP-seq8. Несколько модифицированных методов CLIP-seq также были предложены, в том числе индивидуальное нуклеотидное разрешение кросс-ссылок и иммунопреципиентации (iCLIP), расширенный CLIP (eCLIP), irCLIP, и фотоактивируемый рибонуклеозид-улучшенной перекрестной связи и иммунопреципиентации (PAR-CLIP)9,10,11,12.
Несмотря на широкое использование традиционных методов CLIP-seq при изучении RBPs, методы CLIP имеют несколько недостатков. Во-первых, утомительный денатурированный гель электрофорез и процедура переноса мембраны могут привести к потере информации и вызвать ограниченную сложность последовательности. Во-вторых, белок конкретных антител на основе метода CLIP может тянуть вниз белковый комплекс вместо одного целевого белка, что может привести к ложноположим белково-РНК взаимодействий с copurified RBPs. В-третьих, антитела на основе стратегии требует большого количества высококачественных антител, что делает применение этих методов недостаточным для изучения RBPs без высококачественных антител доступны. В-четвертых, традиционный метод CLIP требует радиозаклейм АТФ для обозначения связанных с белком РНК.
Высокое сродство стрептавидина к биотинилированным белкам делает его очень мощным подходом к очистке конкретных белков или белковых комплексов. Эффективное биотинилирование белков, несущих искусственную пептидную последовательность эктопически выраженной бактериальной биотиновой лигазой BirA в клетках млекопитающих, делает его эффективной стратегией для выполнения биотиновой очистки in vivo13. Мы разработали модифицированный метод CLIP-seq под названием FbioCLIP-seq(FLAG- Bioолово-опосредованное Cross-lчернила и Immuno p recipitation с последующим секвенированием высокой пропускной способности) с использованием FLAG-биотина тегатандема очистки 14 (Рисунок 1). Благодаря тандемной очистке и строгим условиям мытья, почти все взаимодействующие RBPs удаляются(рисунок 2). Строгие условия мытья также позволяют обойти SDS-PAGE и мембраны передачи, которая является трудоемкой и технически сложной задачей. И подобно eCLIP и IRCLIP, метод FbioCLIP-seq не имеет изотопов. Пропуск геля на ход и перенос шагов позволяет избежать потери информации, сохраняет аутентичные взаимодействия белка и РНК нетронутыми, а также увеличивает сложность библиотеки. Кроме того, высокая эффективность системы маркировки делает ее хорошим выбором для RBPs без высококачественных антител доступны.
Здесь мы предоставляем пошаговое описание протокола FbioCLIP-seq для клеток млекопитающих. Короче говоря, клетки связаны между собой 254 нм УФ, а затем клеточный лиз и FLAG иммунопреципитации (FLAG-IP). Далее белково-РНК-комплексы дополнительно очищаются путем захвата биотинов, а РНК фрагментированы частичным пищеварением с помощью MNase. Затем РНК, связанная с белком, дефосфорилируется и привязается к связующим звену 3′ 5′ РНК linker добавляется после РНК фосфорилируется с PNK и eluted по proteinase K пищеварения. После обратной транскрипции сигналы РНК, связанные с белком, усиливаются ПЦР и очищаются путем очистки геля агарозы. Два RBPs были выбраны в качестве примера fbioCLIP-seq результат. LIN28 является хорошо охарактеризованным РНК-связывающим белком, участвующим в созревании микроРНК, переводе белка иперепрограммировании клеток 15,16,17. WDR43 является WD40 домен-содержащий белок считается координировать рибосомы биогенез, эукариотической транскрипции, и эмбриональных стволовых клеток плюрипотентностиуправления 14,18. В соответствии с ранее сообщенные результаты для LIN28 с CLIP-seq, FbioCLIP-seq показывает связывающие сайты LIN28 на “GGAG” мотивы в микроРНК мир-let7g и mRNAs16,19 (Рисунок 3). WDR43 FbioCLIP-seq также определил связывающее предпочтение WDR43 с 5′ внешними транскрибированными spacers (5′-ETS) предварительно rRNAs20 (Рисунок 4). Эти результаты подтверждают надежность метода FbioCLIP-seq.
Здесь мы представляем модифицированный метод CLIP-seq под названием FbioCLIP-seq, воспользовавшись системой двойной маркировки FLAG-biotin для выполнения тандемной очистки белково-РНК-комплексов. Система двойной маркировки FLAG-biotin была показана, что была мощна в определять взаимодействия про?…
The authors have nothing to disclose.
Грантовая поддержка предоставляется Национальной программой фундаментальных исследований Китая (2017YFA0504204, 2018YFA0107604), Национальным фондом естественных наук Китая (31630095) и Центром наук о жизни при Университете Цинхуа.
Equipment | |||
UV crosslinker | UVP | HL-2000 HybrilLinker | |
Affinity Purification Beads | |||
ANTI-FLAG beads | Sigma-Aldrich | A2220 | |
Streptavidin beads | Invitrogen | 112.06D | |
Reagents | |||
10x PBS | Gibco | 70013032 | |
3 M NaOAc | Ambion | AM9740 | |
3 x FLAG peptide | Sigma-Aldrich | F4799 | |
ATP | Sigma-Aldrich | A6559 | |
Calcium chloride (CaCl2) | Sigma-Aldrich | C1016 | |
CIP | NEB | M0290S | CIP buffer is in the same package. |
DTT | Sigma-Aldrich | D0632 | |
EDTA | Sigma-Aldrich | E9884 | |
EGTA | Sigma-Aldrich | E3889 | |
Gel purification kit | QIAGEN | 28704 | |
Glycogen | Ambion | AM9510 | |
Magnesium chloride (MgCl2) | Sigma-Aldrich | 449172 | |
MNase | NEB | M0247S | |
NP-40 | Amresco | M158-500ML | |
PMSF | Sigma-Aldrich | 10837091001 | |
Porteinase K | TAKARA | 9033 | |
Protease inhibitor cocktail | Sigma-Aldrich | P8340 | |
Q5 High-Fidelity 2X Master Mix | NEB | 0492S | |
reverse trancriptase (SupperScriptIII) | Invitrogen | 18080093 | |
RNA isolation reagent (Trizol) | Invitrogen | 15596018 | |
RNase Inhibitor | ThermoFisher | EO0381 | |
RNaseOUT | Invitrogen | 10777019 | |
RQ1 Dnase | Promega | M6101 | |
SDS | Sigma-Aldrich | 1614363 | |
Sodium chloride | Sigma-Aldrich | S9888 | |
Sodium deoxycholate | Sigma-Aldrich | D6750 | |
T4 PNK | NEB | M0201S | PNK buffer is in the same package. |
T4 RNA ligaes | ThermoFisher | EL0021 | T4 RNA ligase buffer and BSA are in the same package. |
T4 RNA ligase2, truncated | NEB | M0242S | T4 RNA ligase buffer and 50% PEG are in the same package. |
Trypsin-EDTA | ThermoFisher | 25200072 | |
Urea | Sigma-Aldrich | 208884 | |
mESC culture medium | |||
DMEM (80%) | Gibco | 11965126 | |
2-Mercaptoethanol | Gibco | 21985023 | |
FCS (15%) | Hyclone | ||
Glutamax (1%) | Gibco | 35050061 | |
LIF | purified recombinant protein; 10,000 fold dilution | ||
NEAA (1%) | Gibco | 11140050 | |
Nucleoside mix (1%) | Millipore | ES-008-D | |
Penicillin-Streptomycin (1%) | Gibco | 15140122 | |
Kit | |||
DNA gel extraction kit | QIAGEN | 28704 |