Summary

経頭蓋磁気刺激によるヒト運動系における機能的特異的神経経路の測定と操作

Published: February 23, 2020
doi:

Summary

この記事では、経頭蓋磁気刺激を用いて機能的に特異的な神経経路を測定し、強化するための新しいアプローチについて説明します。これらの高度な非侵襲的な脳刺激方法論は、脳と行動の関係を理解し、脳障害を治療するための新しい治療法の開発のための新しい機会を提供することができます。

Abstract

脳領域間の相互作用を理解することは、目標指向行動の研究にとって重要である。脳の結合性の機能的神経イメージングは、認知、学習、運動制御などの脳の基本的なプロセスに関する重要な洞察を提供してきました。しかし、このアプローチは、関心のある脳領域の関与に関する因果関係の証拠を提供することはできません。経頭蓋磁気刺激(TMS)は、一過性の脳活動を変更することによってこの限界を克服することができる人間の脳を研究するための強力な、非侵襲的なツールです。ここでは、異なるタスクコンテキストの間に人間の運動システムにおけるコルチコと皮質の相互作用を因果的に調査する2つのコイルを備えたペアパルス、デュアルサイトTMS法を使用して、最近の進歩を強調する。さらに、2つのコイルを持つ皮質刺激の繰り返し対を適用することにより、2つの相互接続された脳領域におけるシナプス効率を一時的に高める皮質対連想刺激(cPAS)に基づく二重部位TMSプロトコルを記述する。これらの方法は、認知運動機能の基礎となるメカニズムのより良い理解を提供するだけでなく、脳回路を調節し、行動を改善するためにターゲットを絞った方法で特定の神経経路を操作するための新しい視点を提供することができます。このアプローチは、脳行動関係のより洗練されたモデルを開発し、多くの神経学的および精神疾患の診断と治療を改善するための効果的なツールであることが証明される可能性があります。

Introduction

非侵襲的脳刺激は、パーキンソン病、アルツハイマー病、脳卒中1、2、3、4などの多くの神経疾患に対する有望な評価ツールおよび治療法です。神経疾患の行動症状と皮質興奮性、神経可塑性、皮質皮質および皮質皮質皮質下接続性5,6の異常との関係を確立する証拠が蓄積されている。したがって、神経学的状態における脳ネットワークダイナミクスと可塑性に関する基本的な知識は、疾患診断、進行、および治療への応答に関する貴重な洞察を提供することができる。機能的磁気共鳴画像(fMRI)は、健康な脳ネットワークと病気の脳ネットワークの両方における脳と行動の複雑な関係を理解するのに有用なツールであり、ネットワーク視点7、8、9に基づいて治療を改善する可能性を有する。しかし、fMRIは本質的に相関性があり、脳機能と行動との因果関係を提供できず、また、患者10、11、12の行動障害に関連する異常な神経回路を回復させる機能接続性を操作することもできない。経頭蓋磁気刺激(TMS)は、健康および疾患におけるヒト脳の機能および行動を因果的に測定し、調節することができる3、13、14、15。

TMSは、人間の脳を刺激する安全で非侵襲的な方法です16,17そして、可塑性を誘導し、測定するために使用することができる18.この方法は、個々の脳領域と行動との因果関係の理解を進めることができる10,11,12,19脳ネットワークの他のノードとの特定の機能的相互作用20,21,22,23.これまでの研究では、運動皮質(M1)の手領域へのTMSが、運動行動に関連する変化の生理学的読み出しとして運動誘発電位(MEP)を生み出すことができることを考えると、ほとんどの研究はヒト運動システムに焦点を当ててきた24、人間の脳のシステムレベルで異なる阻害回路と興奮性回路の検査を可能にする25.2つのコイルを用いたコンディショニングテストTMSアプローチを用いた最近の進歩は、異なる皮質領域間の機能的相互作用を測定することが可能であることを示している。モーターシステムでは、デュアルサイトTMS実験は、M1と相互接続された皮質領域からの入力がタスクの要求、年齢、または病気によって変化できることを示しています14,26.Ferbertたちの研究グループは、他のM1の試験刺激の前にM1にコンディショニング刺激を加えることで、短い間隔間突起抑制(SIHI)として知られる現象であるMEP振幅の阻害をもたらすことを発見した。28.このアプローチを用いた多くのTMS研究は、M1が対側M1、腹側前運動前皮質(PMv)、後部運動前皮質(PMd)、補助運動領域(SMA)、プレSMA、一次感覚皮質(S1)と強く相互接続されていることも示している。後側前頭前野(DLPFC)、および後頭頂皮質(PPC)安静時27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42.興味深いことに、これらの皮質領域からの刺激が運動皮質興奮性に及ぼす影響は、運動の準備中に進行中の脳活動に対して解剖学的、時間的、機能的に特異的である(状態および文脈依存性43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69).しかし、二重部位TMSを用いた研究は、脳障害患者における運動および認知障害を伴う機能的なコルチコ・コルチコ接続性のパターンを特徴付けている。70,71,72.これは、運動障害および認知障害を評価および治療するための新しい方法を開発する機会を与える。

この技術を用いて、M1と相互接続された皮質領域(M1 68、69、70、PMv76、77、78、SMA71、PPC80、81、82)などのM1と相互接続された皮質TMSの繰り返しペアが、ヘビアン原理に基づく特定の神経経路におけるシナプス効率の変化を誘発することも発見された。、84、85、86と行動性能を向上させる72、73、74 。それでも、神経疾患2、75、76、77、78、78、80、81、82、83、84、90、92、神経障害の回路および可塑性機能不全を研究するために、このアプローチを使用している研究はほとんどありません93949596.TMSを用いて機能的に特異的な神経経路を強化することが機能不全回路の活性を回復させるのか、あるいは、無傷の回路の前向きの強化が、寿命を超えて病気の運動機能と認知機能を支える脳ネットワークの回復力97を増強できるかどうかはまだ示されている。神経疾患の根底にある神経メカニズムの基本的な理解の欠如と、相互接続された機能不全脳ネットワークに対する刺激の影響は、現在の治療を制限する。

その能力にもかかわらず、TMSは脳と行動の関係、脳障害の病態生理学、および治療の有効性を理解するための神経科学と臨床ツールの軍備の標準的な部分にはまだなっていません。そのため、そのポテンシャルを実現し、大規模なアプリケーションをサポートするためには、TMSの将来の実験の厳しさを増し、独立した研究室で再現性を高める可能性が高いため、TMS法の標準化が重要です。この記事では、TMS を使用して機能相互作用を測定し、操作する方法について説明します。ここでは、この手法を、TMSベースの出力測定(例えばMEP)を測定することによってモータシステム(例えば、パリエートモータ経路44)で説明する。しかし、このプロトコルは、他の皮質下85、小脳86、87、および皮質領域の標的官能結合にも適合できることに注意することが重要である。73,74,88加えて、脳光腺89、90、91およびfMRI92などの神経イメージング技術は、TMSによる活性および接続性の変化を評価するために使用することができる26、94。我々は、これらのTMS方法を用いた回路レベルの皮質接続性の機能関与の研究は、脳行動関係のより高度なネットワークモデルに基づいて標的型診断および革新的な治療法を開発することを可能にすることを提案することによって締めくくる。

Protocol

以下の3つのTMSメソッドについて説明します。まず、二重部位経頭蓋磁気刺激(dsTMS)を用いてコルチコ・コルチコ接続性を測定する方法について説明し、参加者は1)安静時(休息状態)または2)物体指向の把握運動を行う(タスク依存)。第二に、皮質対連化刺激(cPAS)法は、機能を強化するために皮質刺激(例えば、後頭頂部および一次運動皮質)を組み合わせることで、制御された方法で2つの脳領域間…

Representative Results

図 5は、TMS が FDI 筋肉に引き出した、非条件テスト刺激 (TS 単独から M1、青い痕跡) または PPC (CS-TS、赤いトレース) の調整された刺激のサイズを示しています。安静時、PPCは、PPCの5ミリ秒前にPPC上に送達されるサブスレッショルドCSによって増強されたMEP振幅の減少によって示されるように、ipsilateral M1に対して阻害的影響を及ぼす(トップパネル)。把握作用の調製中に?…

Discussion

ここで説明する二重部位TMS法は、参加者が安静時または目標指向の行動を計画している間、一次運動皮質と相互接続された異なる皮質領域間の機能的相互作用を調査するために使用することができる。脳イメージングは相関的であるが、二重部位TMS法からの基本的な知識は、コルチコ・コルチコ回路の変化に関連する因果的な脳行動関係を明らかにすることができる。さらに、M1と相互接続?…

Declarações

The authors have nothing to disclose.

Acknowledgements

この研究は、ミシガン大学:MCubed Scholarsプログラムとキネシオロジーの学校によってサポートされました。

Materials

Alpha B.I. D50 coil (coated) Magstim 50mm coil
BrainSight 2.0 Software Rogue Research Neuronavigation software
BrainSight frameless Stereotactic System Rogue Research Neuronavigation equiptment
D702 Coil Magstim 70mm coil
Discovery MR750 General Electric 3.0T MRI machine
Disposable Earplugs 3M Foam earplugs
ECG Electrodes 30mm x 24mm Coviden-Kendall H124SG Disposable electrodes
Four Channel Isolated Amplifier Intronix Technologies Corporation 2024F EMG amplifier
gGAMMAcap g.tec Medical Engineering EEG head cap
Micro1401-3 Cambridge Electronic Design Scientific data recorder and processing machine
Nuprep Skin Prep Gel Weaver and Company Skin prep abrasive gel
Signal v.7 Cambridge Electronic Design Data acquisition and analysis software
The Magstim BiStim2 Magstim Transcranial magnetic stimulator (two 2002 units)

Referências

  1. Ni, Z., Chen, R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Translational Neurodegeneration. 4 (1), 1-12 (2015).
  2. Koch, G., Martorana, A., Caltagirone, C. Transcranial magnetic stimulation_ Emerging biomarkers and novel therapeutics in Alzheimer’s disease. Neuroscience Letters. 134355, (2019).
  3. Hallett, M., et al. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clinical Neurophysiology. 128 (11), 2125-2139 (2017).
  4. Hummel, F. C., Cohen, L. G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke. The Lancet Neurology. 5 (8), 708-712 (2006).
  5. Caligiore, D., et al. Parkinson’s disease as a system-level disorder. Nature Publishing Group. 2 (1), 1-9 (2016).
  6. Grefkes, C., Fink, G. R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 134 (5), 1264-1276 (2011).
  7. Calhoun, V. D., Miller, R., Pearlson, G., Adalı, T. The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery. Neuron. 84 (2), 262-274 (2014).
  8. Fox, M. D., et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proceedings of the National Academy of Sciences of the United States of America. 111 (41), 4367-4375 (2014).
  9. Fox, M. D., Halko, M. A., Eldaief, M. C., Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage. 62 (4), 2232-2243 (2012).
  10. Pascual-Leone, A., Walsh, V., Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology. 10 (2), 232-237 (2000).
  11. Pascual-Leone, A., Bartres-Faz, D., Keenan, J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of “virtual lesions”. Philosophical transactions of the Royal Society of London Series B, Biological Sciences. 354 (1387), 1229-1238 (1999).
  12. Bolognini, N., Ro, T. Transcranial magnetic stimulation: disrupting neural activity to alter and assess brain function. The Journal of Neuroscience. 30 (29), 9647-9650 (2010).
  13. Rothwell, J. C. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science. 30 (5), 906-915 (2010).
  14. Lafleur, L. P., Tremblay, S., Whittingstall, K., Lepage, J. F. Assessment of Effective Connectivity and Plasticity With Dual-Coil Transcranial Magnetic Stimulation. Brain Stimulation. 9 (3), 347-355 (2016).
  15. Chouinard, P. A., Paus, T. What have We Learned from “Perturbing” the Human Cortical Motor System with Transcranial Magnetic Stimulation. Frontiers in Human Neuroscience. 4, 173 (2010).
  16. Chen, R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle & Nerve. 23 (S9), 26-32 (2000).
  17. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature. 406 (6792), 147-150 (2000).
  18. Chen, R., Udupa, K. Measurement and modulation of plasticity of the motor system in humans using transcranial magnetic stimulation. Motor Control. 13 (4), 442-453 (2009).
  19. Walsh, V., Rushworth, M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia. 37 (2), 125-135 (1999).
  20. Bestmann, S., et al. Mapping causal interregional influences with concurrent TMS-fMRI. Experimental Brain Research. 191 (4), 383-402 (2008).
  21. Siebner, H. R., Hartwigsen, G., Kassuba, T., Rothwell, J. C. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex. 45 (9), 1035-1042 (2009).
  22. Dayan, E., Censor, N., Buch, E. R., Sandrini, M., Cohen, L. G. Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Publishing Group. 16 (7), 838-844 (2013).
  23. Sack, A. T. Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Current Opinion in Neurobiology. 16 (5), 593-599 (2006).
  24. Bestmann, S., Krakauer, J. W. The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research. 233 (3), 679-689 (2015).
  25. Vesia, M., Davare, M. Decoding Action Intentions in Parietofrontal Circuits. Journal of Neuroscience. 31 (46), 16491-16493 (2011).
  26. Cantarero, G., Celnik, P. Applications of TMS to Study Brain Connectivity. Brain Stimulation: Methodologies and Interventions. , 191-211 (2015).
  27. Ni, Z., et al. Two Phases of Interhemispheric Inhibition between Motor Related Cortical Areas and the Primary Motor Cortex in Human. Cerebral Cortex. 19 (7), 1654-1665 (2009).
  28. Ferbert, A., et al. Interhemispheric inhibition of the human motor cortex. The Journal of Physiology. 453, 525-546 (1992).
  29. Bäumer, T., et al. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest – A bifocal TMS study. Clinical Neurophysiology. 120 (9), 1724-1731 (2009).
  30. Koch, G., et al. Asymmetry of Parietal Interhemispheric Connections in Humans. Journal of Neuroscience. 31 (24), 8967-8975 (2011).
  31. Koch, G., et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. The Journal of Neuroscience. 27 (25), 6815-6822 (2007).
  32. Koch, G., et al. Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. The Journal of Physiology. 578 (2), 551-562 (2007).
  33. Koch, G., et al. TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. The Journal of Physiology. 587, 4281-4292 (2009).
  34. Ziluk, A., Premji, A., Nelson, A. J. Functional connectivity from area 5 to primary motor cortex via paired-pulse transcranial magnetic stimulation. Neuroscience Letters. 484 (1), 81-85 (2010).
  35. Karabanov, A. N., Chao, C. C., Paine, R., Hallett, M. Mapping different intra-hemispheric parietal-motor networks using twin coil TMS. Brain Stimulation. 6 (3), 384-389 (2012).
  36. Mochizuki, H., Huang, Y. Z., Rothwell, J. C. Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. The Journal of Physiology. 561, 331-338 (2004).
  37. Civardi, C., Cantello, R., Asselman, P., Rothwell, J. C. Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans. NeuroImage. 14 (6), 1444-1453 (2001).
  38. Groppa, S., et al. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Human Brain Mapping. 33 (2), 419-430 (2011).
  39. Shirota, Y., et al. Increased primary motor cortical excitability by a single-pulse transcranial magnetic stimulation over the supplementary motor area. Experimental Brain Research. 219 (3), 339-349 (2012).
  40. Cattaneo, L., Barchiesi, G. Transcranial Magnetic Mapping of the Short-Latency Modulations of Corticospinal Activity from the Ipsilateral Hemisphere during Rest. Frontiers in Neural Circuits. 5, 14 (2011).
  41. Brown, M. J. N., et al. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimulation. 12 (5), 1229-1243 (2019).
  42. Brown, M. J. N., Goldenkoff, E. R., Chen, R., Gunraj, C., Vesia, M. Using Dual-Site Transcranial Magnetic Stimulation to Probe Connectivity between the Dorsolateral Prefrontal Cortex and Ipsilateral Primary Motor Cortex in Humans. Brain Sciences. 9 (8), 177 (2019).
  43. Vesia, M., et al. Functional interaction between human dorsal premotor cortex and the ipsilateral primary motor cortex for grasp plans. Neuroreport. 29, 1355-1359 (2018).
  44. Vesia, M., et al. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex. 92, 175-186 (2017).
  45. Vesia, M., Bolton, D. A., Mochizuki, G., Staines, W. R. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia. 51 (3), 410-417 (2013).
  46. Davare, M., Kraskov, A., Rothwell, J. C., Lemon, R. N. Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology. 21 (4), 565-570 (2011).
  47. Davare, M., Rothwell, J. C., Lemon, R. N. Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Current Biology. 20 (2), 176-181 (2010).
  48. Davare, M., Lemon, R., Olivier, E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. The Journal of Physiology. 586, 2735-2742 (2008).
  49. Davare, M., Montague, K., Olivier, E., Rothwell, J. C., Lemon, R. N. Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex. 45 (9), 1050-1057 (2009).
  50. Schintu, S., et al. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation. Neural Plasticity. 2016 (4-6), 1-9 (2016).
  51. Isayama, R., et al. Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex. Journal of Neurophysiology. 121 (2), 563-573 (2019).
  52. Karabanov, A., et al. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training. Journal of Neurophysiology. 107 (11), 3190-3199 (2012).
  53. Picazio, S., et al. Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement Inhibition. Current Biology. 24 (24), 2940-2945 (2014).
  54. Mackenzie, T. N., et al. Human area 5 modulates corticospinal output during movement preparation. Neuroreport. 27 (14), 1056-1060 (2016).
  55. Groppa, S., et al. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex. NeuroImage. 62 (1), 500-509 (2012).
  56. O’Shea, J., Sebastian, C., Boorman, E. D., Johansen-Berg, H., Rushworth, M. F. S. Functional specificity of human premotor-motor cortical interactions during action selection. The European Journal of Neuroscience. 26 (7), 2085-2095 (2007).
  57. Mars, R. B., et al. Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. The Journal of Neuroscience. 29 (21), 6926-6931 (2009).
  58. Hasan, A., et al. Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. Journal of Cognitive Neuroscience. 25 (4), 558-570 (2013).
  59. Fujiyama, H., et al. Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control. The Journal of Neuroscience. 36 (6), 1808-1822 (2016).
  60. Koch, G., et al. Functional Interplay between Posterior Parietal and Ipsilateral Motor Cortex Revealed by Twin-Coil Transcranial Magnetic Stimulation during Reach Planning toward Contralateral Space. The Journal of Neuroscience. 28 (23), 5944-5953 (2008).
  61. Koch, G., et al. In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage. 51 (1), 300-312 (2010).
  62. Koch, G., et al. Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia. 48 (12), 3513-3520 (2010).
  63. Koch, G., et al. Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. The Journal of Neuroscience. 26 (28), 7452-7459 (2006).
  64. Koch, G., Rothwell, J. C. TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behavioural Brain Research. 202 (2), 147-152 (2009).
  65. Lago, A., et al. Ventral premotor to primary motor cortical interactions during noxious and naturalistic action observation. Neuropsychologia. 48 (6), 1802-1806 (2010).
  66. Picazio, S., Ponzo, V., Koch, G. Cerebellar Control on Prefrontal-Motor Connectivity During Movement Inhibition. The Cerebellum. 15 (6), 680-687 (2015).
  67. Byblow, W. D., et al. Functional Connectivity Between Secondary and Primary Motor Areas Underlying Hand-Foot Coordination. Journal of Neurophysiology. 98 (1), 414-422 (2007).
  68. Rizzo, V., et al. Associative cortico-cortical plasticity may affect ipsilateral finger opposition movements. Behavioural Brain Research. 216 (1), 433-439 (2011).
  69. Rizzo, V., et al. Paired Associative Stimulation of Left and Right Human Motor Cortex Shapes Interhemispheric Motor Inhibition based on a Hebbian Mechanism. Cerebral Cortex. 19 (4), 907-915 (2009).
  70. Koganemaru, S., et al. Human motor associative plasticity induced by paired bihemispheric stimulation. The Journal of Physiology. 587 (19), 4629-4644 (2009).
  71. Arai, N., et al. State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. Journal of Neuroscience. 31 (43), 15376-15383 (2011).
  72. Fiori, F., Chiappini, E., Avenanti, A. Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway. NeuroImage. 183, 847-858 (2018).
  73. Chiappini, E., Silvanto, J., Hibbard, P. B., Avenanti, A., Romei, V. Strengthening functionally specific neural pathways with transcranial brain stimulation. Current Biology. 28 (13), 735-736 (2018).
  74. Romei, V., Chiappini, E., Hibbard, P. B., Avenanti, A. Empowering Reentrant Projections from V5 to V1 Boosts Sensitivity to Motion. Current Biology. 26 (16), 2155-2160 (2016).
  75. Zittel, S., et al. Effects of dopaminergic treatment on functional cortico-cortical connectivity in Parkinson’s disease. Experimental Brain Research. 233 (1), 329-337 (2014).
  76. Nelson, A. J., Hoque, T., Gunraj, C., Ni, Z., Chen, R. Impaired interhemispheric inhibition in writer’s cramp. Neurology. 75 (5), 441-447 (2010).
  77. Murase, N., Duque, J., Mazzocchio, R., Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology. 55 (3), 400-409 (2004).
  78. Bonnì, S., et al. Altered Parietal-Motor Connections in Alzheimer’s Disease Patients. Journal of Alzheimer’s Disease. 33 (2), 525-533 (2012).
  79. Koch, G., et al. Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia. Movement Disorders. 23 (5), 660-668 (2008).
  80. Koch, G., et al. Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain. 131, 3147-3155 (2008).
  81. Di Lorenzo, F., et al. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Annals of Neurology. 80 (2), 202-210 (2016).
  82. Ponzo, V., et al. Altered inhibitory interaction among inferior frontal and motor cortex in l-dopa-induced dyskinesias. Movement Disorders. 31 (5), 755-759 (2016).
  83. Koch, G., et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke. JAMA Neurology. 76 (2), 170-178 (2018).
  84. Palomar, F. J., et al. Parieto-motor functional connectivity is impaired in Parkinson’s disease. Brain Stimulation. 6 (2), 147-154 (2013).
  85. Udupa, K., et al. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson’s Disease. The Journal of Neuroscience. 36 (2), 396-404 (2016).
  86. Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Annals of Neurology. 37 (6), 703-713 (1995).
  87. Pinto, A. D., Chen, R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Experimental Brain Research. 140 (4), 505-510 (2001).
  88. Kohl, S., et al. Cortical Paired Associative Stimulation Influences Response Inhibition Cortico-cortical and Cortico-subcortical Networks. Biological Psychiatry. 85 (4), 355-363 (2019).
  89. Casula, E. P., Pellicciari, M. C., Picazio, S., Caltagirone, C., Koch, G. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. NeuroImage. 143, 204-213 (2016).
  90. Veniero, D., Ponzo, V., Koch, G. Paired Associative Stimulation Enforces the Communication between Interconnected Areas. Journal of Neuroscience. 33 (34), 13773-13783 (2013).
  91. Tremblay, S., et al. Clinical utility and prospective of TMS-EEG. Clinical Neurophysiology. 130 (5), 802-844 (2019).
  92. Johnen, V. M., Neubert, F. X., Buch, E. R., Verhagen, L. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. eLife. 4, 04585 (2015).
  93. Santarnecchi, E., et al. Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Human Brain Mapping. 39 (12), 4870-4883 (2018).
  94. Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage. 140, 4-19 (2016).
  95. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Screening questionnaire before TMS: An update. Clinical Neurophysiology. 122 (8), 1686 (2011).
  96. Keel, J. C., Smith, M. J., Wassermann, E. M. A safety screening questionnaire for transcranial magnetic stimulation. Clinical Neurophysiology. 112 (4), 720 (2001).
  97. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology. 91 (2), 79-92 (1994).
  98. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 126 (6), 1071-1107 (2015).
  99. Wassermann, E. M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalography and Clinical Neurophysiology. 108 (1), 1-16 (1998).
  100. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology. 120 (12), 2008-2039 (2009).
  101. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9 (1), 97-113 (1971).
  102. Villamar, M. F., et al. Technique and Considerations in the Use of 4×1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). Journal of Visualized Experiments. (77), e50309 (2013).
  103. Sack, A. T., et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Journal of Cognitive Neuroscience. 21 (2), 207-221 (2009).
  104. Yousry, T. A., et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 120, 141-157 (1997).
  105. Groppa, S., et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clinical Neurophysiology. 123 (5), 858-882 (2012).
  106. Cattaneo, L., et al. A cortico-cortical mechanism mediating object-driven grasp in humans. Proceedings of the National Academy of Sciences of the United States of America. 102 (3), 898-903 (2005).
  107. Hebb, D. O. . The organization of behavior: A neurophysiological approach. , (1949).
  108. Caporale, N., Dan, Y. Spike Timing-Dependent Plasticity: A Hebbian Learning Rule. Annual Review of Neuroscience. 31 (1), 25-46 (2008).
  109. Markram, H., Lübke, J., Frotscher, M., Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 275 (5297), 213-215 (1997).
  110. Jackson, A., Mavoori, J., Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 444 (7115), 56-60 (2006).
  111. Koch, G., Ponzo, V., Di Lorenzo, F., Caltagirone, C., Veniero, D. Hebbian and Anti-Hebbian Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections. Journal of Neuroscience. 33 (23), 9725-9733 (2013).
  112. Romei, V., Thut, G., Silvanto, J. Information-Based Approaches of Noninvasive Transcranial Brain Stimulation. Trends in Neurosciences. 39 (11), 782-795 (2016).
  113. Carson, R. G., et al. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology. 560, 929-940 (2004).

Play Video

Citar este artigo
Goldenkoff, E. R., Mashni, A., Michon, K. J., Lavis, H., Vesia, M. Measuring and Manipulating Functionally Specific Neural Pathways in the Human Motor System with Transcranial Magnetic Stimulation. J. Vis. Exp. (156), e60706, doi:10.3791/60706 (2020).

View Video