Ce protocole décrit une méthode pour la purification des leucocytes polymorphes du sang humain entier et deux essais distincts qui quantifient la cytotoxicité de Staphylococcus aureus contre ces cellules immunitaires innées importantes.
Staphylococcus aureus est capable de sécréter un large éventail de leucocidins qui ciblent et perturbent l’intégrité de la membrane des leucocytes polymorphes (PMN ou neutrophiles). Ce protocole décrit à la fois la purification des PMN humains et la quantification de la cytotoxicité de S. aureus contre les PMN dans trois sections différentes. La section 1 détaille l’isolement des PMN et du sérum du sang humain à l’aide de centrifugation de densité. La section 2 teste la cytotoxicité des protéines extracellulaires produites par S. aureus par rapport à ces PMN humains purifiés. La section 3 mesure la cytotoxicité par rapport aux PMN humains à la suite de la phagocytose de S. aureusvivant. Ces procédures mesurent la perturbation de l’intégrité de membrane de plasma de PMN par S. aureus leukocidins utilisant l’analyse de cytométrie d’écoulement des PMNs traités avec l’iodure de propidium, un fluorophore de liaison d’ADN qui est imperméable de membrane de cellules. Collectivement, ces méthodes ont l’avantage de tester rapidement la cytotoxicité de S. aureus contre les PMN humains primaires et peuvent être facilement adaptées pour étudier d’autres aspects des interactions hôte-pathogène.
Staphylococcus aureus est une bactérie Gram-positive qui provoque un large éventail de maladies chez l’homme. Cet agent pathogène de premier plan produit de nombreux facteurs de virulence qui contribuent à différents aspects de l’infection. Il s’agit notamment de molécules de surface qui permettent à S. aureus d’adhérer à différents types de tissu hôte1, protéines extracellulaires qui interfèrent avec la réponse immunitaire de l’hôte2, et un tableau de toxines sécrétées qui ciblent différents types de cellules hôtes3. Dans ce rapport, nous décrivons une méthode qui quantifie la cytotoxicité des protéines extracellulaires produites par S. aureus contre les leucocytes polymorphes humains (PMN souvers ou neutrophiles), cellules effectrices primaires de la réponse immunitaire innée de l’hôte.
Les PMN sont les leucocytes les plus abondants chez les mammifères. Ces cellules immunitaires circulantes sont rapidement recrutées sur le site de l’insulte de tissu hôte en réponse aux signaux de danger produits par les cellules résidentes ou par des composés uniques aux microbes envahissants. L’entrée extracellulaire de ces molécules et des contacts directs avec les cellules hôtes résidentes activées pendant l’extravasation augmentent l’état d’activation des PMN dans un processus connu sous le nom d’amorçage4,5. Les PMN d’apaisement qui ont atteint le tissu affligé exécutent alors les réponses immunitaires innées importantes conçues pour empêcher l’établissement de l’infection. Il s’agit notamment de la liaison et l’internalisation, ou phagocytose, des micro-organismes envahisseurs qui déclenche une cascade d’événements intracellulaires cumulant dans la destruction des microbes par une batterie de puissants composés antimicrobiens5.
Les PMN jouent un rôle essentiel pour protéger les humains contre les agents pathogènes envahissants et sont particulièrement importants pour prévenir l’infection à S. aureus 4. Cependant, cette bactérie produit un large éventail de gènes de virulence qui entravent différentes fonctions PMN. Ceux-ci incluent les protéines extracellulaires qui bloquent la reconnaissance des molécules de signalisation, empêchent l’adhérence à l’emformation de l’hôte du tissu, inhibent la production de composés antimicrobiens, et compromettent l’intégrité de la membrane plasmatique4. S. aureus orchestre l’expression temporelle de ces gènes de virulence à travers l’entrée collective de plusieurs systèmes sensoriels à deux composantes qui reconnaissent des indices environnementaux spécifiques. Le système à deux composants SaeR/S est un important régulateur de la transcription du gène de la virulence de S. aureus lors de l’infection6,7,8,9,10,11. En particulier, ce système à deux composants s’est avéré essentiel pour la production de leukocidins bicomposants qui ciblent spécifiquement les PMN humains12.
Ce protocole est divisé en trois sections différentes. La première section décrit la purification des PMN à partir du sang humain à l’aide de la centrifugation du gradient de densité à l’aide d’un protocole qui a été adapté à partir de méthodes établies par le bôyum13 et le Nauseef14. Les deuxième et troisième sections détaillent deux techniques différentes pour examiner la cytotoxicité de S. aureus ; l’un enivre les PMN avec des protéines extracellulaires produites par S. aureus tandis que l’autre examine la capacité des bactéries vivantes à endommager les PMN à la suite de la phagocytose. Ces procédures utilisent l’iodure de propidium pour mesurer la perte de l’intégrité de la membrane plasmatique PMN causée par les toxines formant des pores de S. aureus. Propidium iodide est un fluorophore liant l’ADN qui est normalement membrane cellulaire imperméable, mais peut traverser les membranes plasmatiques qui ont été perturbés par les toxines S. aureus. L’analyse de la cytométrie des flux permet la quantification rapide des PMN positifs en iodure de propidium pour mesurer la cytotoxicité relative des souches de S. aureus. Le S. aureus résistant à la méthicilline (SARM) identifié comme électrophoresis de gel pulsé USA300 et mutant de la délétion isogénique de saeR/S dans cette souche (USA300MDsaeR/S)ont été utilisés comme modèles pour démontrer comment ces procédures peuvent quantifier la cytotoxicité de S. aureus contre les PMN humains.
Ce protocole décrit la purification des PMN du sang humain et deux essais distincts qui emploient l’iodure de propidium pour quantifier la cytotoxicité de S. aureus contre ces cellules immunitaires innées importantes. Le succès de ces procédures dépendra de la qualité des PMN purifiés et de la préparation appropriée de S. aureus et de protéines extracellulaires produites par cet agent pathogène. Pour l’isolement des PMN, il est important de minimiser l’activation des PMN pendant et après la purification en utilisant des réactifs exempts de contamination par l’endotoxine, en traitant les préparations cellulaires en douceur et en maintenant les cellules à la température appropriée. Les signes qui indiquent l’activation des PMN incluent l’agglutination des cellules pendant la purification et quand plus de 5% de cellules isolées tachent positive pour l’iodure de propidium. En raison de la durée de vie relativement courte des PMN, ces cellules doivent être isolées du sang humain et testées dans la même journée. Les PMN commenceront à montrer des signes d’apoptose spontanée s’ils sont laissés sur la glace pendant plus de 3 h après la purification. Comme mentionné précédemment, il est très important que chaque préparation PMN soit soigneusement évaluée à l’aide de l’analyse de cytométrie du débit de la diffusion vers l’avant et latérale ainsi que de la coloration de l’iodure de propidium pour assurer la pureté et l’intégrité des cellules isolées.
L’expression des leukocidins bicomposants par S. aureus est responsable de la majorité de l’intégrité compromise de membrane de plasma de PMN qui est observée utilisant les essais décrits dans ce protocole. La variation de l’expression de ces toxines et d’autres peptides formant des pores, tels que les modulins solubles dans le phénol, entre les souches de S. aureus produira des différences de cytotoxicité par rapport aux PMN humains. Des écarts significatifs pendant la croissance in vitro entre les souches de S. aureus influenceront également l’expression des toxines formant des pores et la cytotoxicité subséquente. En outre, le rapport entre S. aureus et les PMN dans les essais de phagocytose a un impact majeur sur la perméabilité subséquente de la membrane plasmatique PMN (figure 3A) et ces expériences nécessitent la récolte constante de concentrations égales de chaque souche de S. aureus testée à mi-exponentielle en utilisant l’OD600 de bactéries sous-cultivées. Compte tenu de ces considérations, il est très important de définir les courbes de croissance pour toutes les souches qui seront examinées avant de commencer les essais de cytotoxicité. Nous ne recommandons pas ces méthodes pour analyser la cytotoxicité de S. aureus avec des souches qui présentent des différences significatives de croissance in vitro.
USA300 est un isolat virulent de SARM qui est connu pour être fortement cytotoxique contre les PMN humains15 et la perte de SaeR/S dans cette souche réduit considérablement la transcription de nombreuses leucocidins bi-composants qui ciblent les PMN humains6,12, ce qui rend ces souches modèles idéales pour comparer la cytotoxicité en utilisant les essais décrits. Cependant, il existe une grande variation génétique entre les différents isolats de S. aureus et les paramètres détaillés dans ces protocoles peuvent ne pas entraîner de changements substantiels de cytotoxicité par rapport aux PMN humains lors de l’essai d’autres souches de S. aureus. L’adaptation des conditions de croissance, des volumes de supernatants ajoutés, ou le rapport des bactéries aux PMN peut être nécessaire pour le succès avec ces méthodes utilisant d’autres souches de S. aureus.
The authors have nothing to disclose.
Ce travail a été soutenu par les National Institutes of Health Grants NIH-1R56AI135039-01A1, 1R21A128295-01, U54GM115371 ainsi que des fonds de la Montana State University Agriculture Experiment Station, et une subvention d’équipement de Murdock Charitable Trust .
0.9% Sodium Chloride Injection, USP, 500 mL VIAFLEX Plastic Container | Baxter | 2B1323Q | PMN purification |
1.5 mL micro-centrifuge tubes with Snap Caps | VWR | 89000-044 | Used in washing cells |
1.8% Sodium Chloride Solution | Sigma-Aldrich | S5150 | PMN purification |
12x75mm Culture tubes | VWR | 60818-430 | Used as flow cytometry tubes |
20% (w/w) Dextran | Sigma-Aldrich | D8802 | PMN purification |
3125 Hand Tally Counter | Traceable Products | 3125CC | For counting cells |
50 mL conical centrifuge tubes | VWR | 89039-656 | For dispensing media |
Bacto Tryptic Soy Broth, Soybean-Casein Digest Medium | FischerScientific | 211823 | For growing cell cultures |
BD Disposable Syringes with Luer-Lok Tips, 3 mL | FischerScientific | BD 309657 | For filtering supernatants |
Bright-Line Hemocytometer | Sigma-Aldrich | Z359629 | Cell counting apparatus |
DPBS, 1x (Dulbecco's Phosphate Buffered Saline) with calcium and magnesium | Corning | 21-030-CV | Used in washing cells |
Ficoll-Paque PLUS | GE Healthcare | 17-1440-02 | PMN purification |
Fisherbrand Sterile Polystyrene Disposable Serological Pipets | FischerScientific | 13-678-11E | For aspirating liquid |
Greiner CELLSTAR 96 well plates | Millipore Sigma | M0687 | Plate for holding experimental samples |
OMICRON Syringe Filters | Omicron Scientific | SFPV13R | For filtering supernatants |
Propidium iodide | ThermoFisher Scientific | P3566 | Membrane impermeable DNA stain |
PYREX Brand 4980 Erlenmeyer Flasks | Cole-Parmer | EW-34503-24 | For growing cell cultures |
RPMI 1640, 1X without L-glutamine, phenol red | Corning | 17-105-CV | Used in resuspending cells |
Sterile Water for Irrigation, USP | Baxter | 2F7113 | PMN purification |
The Pipette Pump | Bel-Art Products | F37898 | For aspirating liquid |
Triton X-100 | Sigma-Aldrich | X100 | Membrane integrity positive control |