Summary

利用雷达采集的数据和仿真评估独家刺堤 U 型转弯设计

Published: February 01, 2020
doi:

Summary

该协议描述了通过仿真解决微观交通问题的过程。整个过程包含数据收集、数据分析、仿真模型构建、仿真校准和敏感分析的详细说明。还讨论了该方法的修改和故障排除。

Abstract

传统的 U 型转弯设计可以明显改进操作功能,而 U 型转弯分流和合并段仍会导致交通拥堵、冲突和延迟。这里提出了一种独特的支线堤坝U型转弯车道设计(ESUL),以解决传统U型转弯设计的缺点。为了评估ESUL的运行性能,需要一种流量仿真协议。整个仿真过程包括五个步骤:数据收集、数据分析、仿真模型构建、仿真校准和敏感分析。数据收集和仿真模型构建是两个关键步骤,稍后将进行更详细的介绍。评估中常用三个指标(行驶时间、延迟和停靠点数),其他参数可根据实验需要从仿真中测量。结果表明,ESUL显著地降低了传统U型转弯设计的缺点。仿真可用于解决微观交通问题,例如在单个或多个相邻交叉路口或短段中。此方法不适用于没有数据收集的大规模公路网络或评估。

Introduction

一些交通问题,如交叉口或短路段的交通拥堵,可以通过优化道路设计、改变信号时序、交通管理测量和其他交通技术1、2、3、4来解决或改善。与原始情况相比,这些改进对流量操作有积极或消极的影响。交通操作的变化可以在交通模拟软件中进行比较,而不是在交叉路口或段的实际重建中进行比较。在提出一个或多个改进计划时,流量模拟方法是一种快速而廉价的选择,尤其是在比较不同的改进计划或评估改进效果时。本文通过评价专用支线堤U型转弯车道设计的交通流量运行特性,介绍了通过仿真解决交通问题的过程。

U 形转弯移动是一种广泛的交通需求,需要在路上打开 U 形转弯中位数,但这一点一直存在争议。设计 U 轮开口可能会导致交通拥堵,而关闭 U 轮开口可能会导致 U 型转弯车辆的绕行。U 型转弯车辆和直左转车辆需要 U 型转弯,导致交通延误、停车甚至事故。提出了一些解决U型转弯运动的弊端的技术,如信号6、7、专用左转车道8、9、自动驾驶车辆10、11等。由于上述解决方案具有限制性应用,U 型转弯问题仍有改进潜力。新的 U 型转弯设计在某些情况下可能是更好的解决方案,能够解决现有问题。

最流行的U形转弯设计是中值U形转弯交叉口(MUTI)12,13,14,15,如图1所示。《交通法》的一个重要限制是,它不能区分U型转弯车辆和过往车辆,而且交通冲突仍然存在一种经过修改的 U 型转弯设计,称为专用支线堤坝 U 型转弯车道 (ESUL;图 2)建议在中位数的两侧引入一条专属的U型转弯车道,以减少交通拥堵。ESUL 可以显著减少行驶时间、延迟以及由于两个流量的通道而停靠的次数。

为了证明ESUL比普通MUTI更有效,需要一个严格的协议。ESUL 实际上不能在理论模型之前构造;因此,需要模拟18。利用交通流量参数,一些关键车型已用于仿真研究19个,如驾驶行为模型20、21、车后22、23、U型转弯车型4、车道变换模型21。交通流量模拟的精度在16、24日被广泛接受。在这项研究中,MUTI 和 ESUL 都进行了模拟,收集了数据,以比较 ESUL 的改进。为了保证准确性,还模拟了 ESUL 的敏感分析,该分析可应用于许多不同的交通状况。

该协议提供了解决实际交通问题的实验过程。提出了交通数据采集、数据分析、交通综合效率提高分析的方法。该过程可以概括为五个步骤:1)流量数据收集,2)数据分析,3)仿真模型构建,4)模拟模型校准,5)操作性能灵敏度分析。如果五个步骤中的任一要求未得到满足,则该过程不完整,不足以证明有效性。

Protocol

1. 设备的准备 准备以下两个设备来收集双向流量:雷达、笔记本电脑、雷达和笔记本电脑的电池和电缆、相机以及雷达和相机三脚架。注:雷达及其相应的软件用于收集车速和轨迹,这比速度枪更准确。如果其他设备可用于收集车速、轨迹和体积,则雷达不是唯一的选择。由于大型车辆可以轻松阻挡雷达信号,因此摄像机拍摄的视频可用于车辆计数。在调查期间,如果天气是阴雨或晴?…

Representative Results

图 2显示了 U 形转弯中位数开仓的 ESUL 的图示。WENS 表示四个基本方向。主干道有六条车道,有两个方向。绿化带在两侧划分非机动车道,中间划分两个方向。流量1是东西通过交通,流量2是东向东U转流,流量3是西向东通过交通,流量4是西向西U转交通。 ESUL 内部 2 车道的功能是分流、减速、U 型转弯、加…

Discussion

本文讨论了利用仿真解决交叉口或短段交通问题的过程。有几点值得特别注意,这里将详细讨论。

现场数据收集是首先值得注意的。数据收集位置的一些要求如下:1) 为数据收集寻找合适的位置。该位置应类似于研究中的道路几何形状,这是数据收集的前提。2) 通过找到足够的间隙,确定雷达和其他设备的设定位置,在雷达信号无法阻挡的情况下。可以使用一些最先进的?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢中国奖学金委员会为这项工作提供部分资金,文件号为201506560015。

Materials

Battery Beijing Aozeer Technology Company LPB-568S Capacity: 3.7v/50000mAh. Two ports, DC 1 out:19v/5A (max), for one laptop. DC 2 out:12v/3A (max), for one radar.
Battery Cable Beijing Aozeer Technology Company No Catalog Number Connect one battery with one laptop.
Camera SONY a6000/as50r The videos shot by the cameras were 1080p, which means the resolution is 1920*1080.
Camera Tripod WEI FENG 3560/3130 The camera tripod height is 1.4m.
Laptop Dell C2H2L82 Operate Windows 7 basic system.
Matlab Software MathWorks R2016a
Radar Beijing Aozeer Technology Company SD/D CADX-0037
Radar Software Beijing Aozeer Technology Company Datalogger
Radar Tripod Beijing Aozeer Technology Company No Catalog Number Corresponding tripods which could connect with radars, the height is 2m at most.
Reflective Vest Customized No Catalog Number
VISSIM Software PTV AG group PTV vissim 10.00-07 student version

Referências

  1. Tang, J. Q., Heinimann, H. R., Ma, X. L. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads. PLoS ONE. 13 (1), e0190616 (2018).
  2. Bared, J. G., Kaisar, E. I. Median U-turn design as an alternative treatment for left turns at signalized intersections. ITE Journal. 72 (2), 50-54 (2002).
  3. El Esawey, M., Sayed, T. Operational performance analysis of the unconventional median U-turn intersection design. Canadian Journal of Civil Engineering. 38 (11), 1249-1261 (2011).
  4. Leng, J., Zhang, Y., Sun, M. VISSIM-based simulation approach to evaluation of design and operational performance of U-turn at intersection in China. 2008 International Workshop on Modelling, Simulation and Optimization. , (2008).
  5. Shao, Y., et al. Evaluating the sustainable traffic flow operational features of an exclusive spur dike U-turn lane design. PLoS ONE. 14 (4), e0214759 (2019).
  6. Zhao, J., Ma, W. J., Head, K., Yang, X. G. Optimal Intersection Operation with Median U-Turn: Lane-Based Approach. Transportation Research Record. (2439), 71-82 (2014).
  7. Hummer, J. E., Reid, J. E. Unconventional Left Turn Alternatives for Urban and Suburban Arterials-An Update. Urban Street Symposium Conference Proceedings. , (1999).
  8. Ram, J., Vanasse, H. B. Synthesis of the Median U-Turn Intersection Treatment. Transportation Research Board. , (2007).
  9. Levinson, H. S., Koepke, F. J., Geiger, D., Allyn, D., Palumbo, C. Indirect left turns-the Michigan experience. Fourth Access Management Conference. , (2000).
  10. Mousa, M., Sharma, K., Claudel, G. C. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection. IEEE Transactions on Intelligent Transportation Systems. , 1-11 (2017).
  11. Odat, E., Shamma, J., Claudel, G. C. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors. IEEE Transactions on Intelligent Transportation Systems. , 1-14 (2017).
  12. Liu, P., et al. Operational effects of U-turns as alternatives to direct left-turns. Journal of Transportation Engineering. 133 (5), 327-334 (2007).
  13. Potts, I. B., et al. Safety of U-turns at Unsignalized Median Opening. Transportation Research Board. , (2004).
  14. Yang, X. K., Zhou, G. H. CORSIM-Based Simulation Approach to Evaluation of Direct Left Turn vs Right Rurn Plus U-Turn from Driveways. Journal of Transportation Engineering. 130 (1), 68-75 (2004).
  15. Guo, Y. Y., Sayed, T., Zaki, M. H. Exploring Evasive Action-Based Indicators for PTW Conflicts in Shared Traffic Facility Environments. Transportation Engineering, Part A: Systems. 144 (11), 04018065 (2018).
  16. Liu, P., Qu, X., Yu, H., Wang, W., Gao, B. Development of a VISSIM simulation model for U-turns at unsignalized intersections. Journal of Transportation Engineering. 138 (11), 1333-1339 (2012).
  17. Shao, Y., Han, X. Y., Wu, H., Claudel, G. C. Evaluating Signalization and Channelization Selections at Intersections Based on an Entropy Method. Entropy. 21 (8), 808 (2019).
  18. Ander, P., Oihane, K. E., Ainhoa, A., Cruz, E. B. Transport Choice Modeling for the Evaluation of New Transport Policies. Sustainability. 10 (4), 1230 (2018).
  19. Wang, J., Kong, Y., Fu, T., Stipanicic, J. The impact of vehicle moving violations and freeway traffic flow on crash risk: An application of plugin development for microsimulation. PLoS ONE. 12 (9), e0184564 (2017).
  20. Lin, C., Gong, B., Qu, X. Low Emissions and Delay Optimization for an Isolated Signalized Intersection Based on Vehicular Trajectories. PLoS ONE. 10 (12), e0146018 (2015).
  21. Tang, T. Q., Wang, Y. P., Yang, X. B., Huang, H. J. A multilane traffic flow model accounting for lane width, lanechanging and the number of lanes. Networks and Spatial Economics. 14 (14), 465-483 (2014).
  22. Gupta, A. K., Dhiman, I. Analyses of a continuum traffic flow model for a nonlane-based system. International Journal of Modern Physics C. 25 (10), 1450045 (2014).
  23. Chen, H., Zhang, N., Qian, Z. VISSIM-Based Simulation of the Left-Turn Waiting Zone at Signalized Intersection. 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). , (2008).
  24. PTV AG. . PTV VISSIM 10 User Manual. , (2018).
  25. AutoNavi Traffic Big-data. . 2017 Traffic Analysis Reports for Major Cities in China. , (2018).
  26. AutoNavi Traffic Big-data. . Xi’an realtime traffic congestion delay index. , (2019).
  27. Xiang, Y., et al. Evaluating the Operational Features of an Unconventional Dual-Bay U-Turn Design for Intersections. PLoS ONE. 11 (7), e0158914 (2016).
  28. Kuang, Y., Qu, X., Weng, J., Etemad, S. A. How Does the Driver’s Perception Reaction Time Affect the Performances of Crash Surrogate Measures?. PLoS ONE. 10 (9), e0138617 (2015).
  29. Zhao, F., Sun, H., Wu, J., Gao, Z., Liu, R. Analysis of Road Network Pattern Considering Population Distribution and Central Business District. PLoS ONE. 11 (3), e0151676 (2016).
  30. Jian, S. . Guideline for microscopic traffic simulation analysis. , (2014).
  31. Liu, K., Cui, M. Y., Cao, P., Wang, J. B. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data. PLoS ONE. 11 (6), e0158123 (2016).
  32. Ran, B., Song, L., Zhang, J., Cheng, Y., Tan, H. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data. PLoS ONE. 11 (7), e0157420 (2016).
  33. Zhao, J., Li, P., Zhou, X. Capacity Estimation Model for Signalized Intersections under the Impact of Access Point. PLoS ONE. 11 (1), e0145989 (2016).
  34. Wei, X., Xu, C., Wang, W., Yang, M., Ren, X. Evaluation of average travel delay caused by moving bottlenecks on highways. PLoS ONE. 12 (8), e0183442 (2017).
  35. American Association of State and Highway Transportation Officials (AASHTO). . Highway Capacity Manual 6th edition. , (2010).
  36. Wang, Y., Qu, W., Ge, Y., Sun, X., Zhang, K. Effect of personality traits on driving style: Psychometric adaption of the multidimensional driving style inventory in a Chinese sample. PLoS ONE. 13 (9), e0202126 (2018).
  37. Shen, B., Qu, W., Ge, Y., Sun, X., Zhang, K. The relationship between personalities and self-report positive driving behavior in a Chinese sample. PLoS ONE. 13 (1), e0190746 (2018).
  38. American Association of State and Highway Transportation Officials (AASHTO). . A policy on geometric design of highways and streets 6th Edition. , (2011).
  39. Ashraf, M. I., Sinha, S. The “handedness” of language: Directional symmetry breaking of sign usage in words. PLoS ONE. 13 (1), e0190735 (2018).
  40. Lu, A. T., Yu, Y. P., Niu, J. X., John, X. Z. The Effect of Sign Language Structure on Complex Word Reading in Chinese Deaf Adolescents. PLoS ONE. 10 (3), e0120943 (2015).
  41. Fan, L., Tang, L., Chen, S. Optimizing location of variable message signs using GPS probe vehicle data. PLoS ONE. 13 (7), e0199831 (2018).

Play Video

Citar este artigo
Shao, Y., Yu, H., Wu, H., Han, X., Zhou, X., Claudel, C. G., Zhang, H., Yang, C. Evaluation of an Exclusive Spur Dike U-Turn Design with Radar-Collected Data and Simulation. J. Vis. Exp. (156), e60675, doi:10.3791/60675 (2020).

View Video