Summary

使用碘电磷诱导红血球中的红血球

Published: January 21, 2020
doi:

Summary

提供了一种诱导红斑病的方案,即红细胞中程序化细胞死亡,使用碘化钙,碘霉素。通过监测膜外传单中的局部磷脂酰丝氨酸来评估成功的红斑狼疮。已经审查了影响协议成功的因素,并提供了最佳条件。

Abstract

红细胞病,红细胞程序性细胞死亡,发生在一些血液学疾病和红细胞损伤期间。红斑细胞的一个特征是细胞膜成分不对称的丧失,导致磷脂酰丝氨酸在膜外膜上的易位。这个过程是由Ca2+细胞内浓度的增加触发的,它激活scramblase,一种促进膜传单之间磷脂双向运动的酶。鉴于红斑病在各种疾病条件下的重要性,已经努力在体外诱导红斑狼疮。这些努力通常依靠电离钙,碘霉素,以提高细胞内Ca2+浓度和诱导红斑。然而,在文献中报告了许多关于使用碘霉素诱导红斑狼疮的程序的差异。在此,我们报告人类红细胞中碘霉素引起的红斑狼疮的分步方案。我们专注于该程序的重要步骤,包括电离物浓度、孵育时间和葡萄糖消耗,并提供具有代表性的结果。该协议可用于在实验室中可重复诱导红斑狼疮。

Introduction

红细胞中的程序性细胞死亡,也称为红斑病,在许多临床条件和血液学疾病中很常见。脂质增,与细胞收缩和细胞血浆膜1、2磷脂不对称的丧失有关。不对称性丧失导致磷脂酰丝氨酸(PS)的易位,这种脂质通常位于内侧传单3,4,到细胞外传单,信号到巨噬细胞到噬菌体和去除有缺陷的红细胞5,6,7,8。在红细胞正常寿命结束时,通过巨噬细胞去除红细胞可确保循环中的红细胞平衡。然而,在疾病条件下,如刀状细胞疾病和地中海贫血9,10,11,增强性红斑狼疮可能导致严重的贫血2。由于其在血液病学中的重要性,研究诱导或抑制红斑病的因素以及这一过程背后的分子机制具有极大的兴趣。

健康红细胞的血浆膜是不对称的,不同的磷脂在外部和内侧分布。膜不对称主要受膜酶作用的调节。氨磷脂转氯酶通过将这些脂质引导到细胞内部传单,促进氨磷脂、PS和磷脂酰胺(PE)的运输。另一方面,软体酶将含有磷脂、磷脂酰胆碱(PC)和斯芬戈米林(SM)的胆碱从细胞膜的内侧输送到外膜12。然而,与健康细胞不同,红斑红细胞的膜被搅乱。这是由于第三种酶,scramblase的作用,它通过促进氨磷脂的双向传输13,14,15,16破坏磷脂不对称。斯兰布拉斯由Ca2+细胞内水平升高激活。因此,促进Ca2+在细胞膜12间运输的电泳钙是红斑狼疮的有效诱因。

碘霉素,一种电磷钙,已广泛用于诱导红细胞12,17,18,19,20,21,22,23,24,25,26的红斑狼疮。碘霉素同时具有亲水性和疏水性组,这些组是结合和捕获Ca2+离子,并将其输送到细胞空间27、28、29所必需的。这导致scramblase的激活和PS的易位到外传单,这可以很容易地检测使用附件-V,一种细胞蛋白与PS12高度亲和力。虽然通常报道用碘霉素引发红斑狼疮,但文献中存在相当大的方法差异(表1)。经历红斑狼疮的红细胞群取决于不同的因素,如电离度浓度、电离磷的治疗时间以及细胞外环境的糖含量(葡萄糖消耗激活阳离子通道,并便利Ca2+进入细胞空间)30,31。然而,这些因素在文献中几乎没有一致性,使得在体外难以进行红斑狼疮的排斥性。

在这个协议中,我们提出了一个分步程序,以诱导红细胞中的红细胞。检查影响成功红斑狼疮的因素,包括Ca2+浓度、电离浓度、治疗时间和葡萄糖耗尽缓冲液的预孵育,并报告最佳值。此过程表明,与含葡萄糖缓冲液相比,无葡萄糖缓冲液中红细胞的预孵育可显著增加红细胞分百分比。该协议可用于实验室生产各种应用的红细胞红细胞。

Protocol

下文所述协议中使用的所有人体血液样本均作为去身份化样本购买。没有人类受试者直接参与或招募参与这项研究。在涉及人类研究时,应使用《赫尔辛基宣言》的指导方针。 1. 从全血分离的红细胞 将500μL全血加入酸锡酸盐Dextrose(ACD)(储存在4°C)到微离心管中。注:全血是在ACD中购买的。据该公司称,1.5 mL的ACD被添加到7 mL的全血(8.5 mL总体积)。 在?…

Representative Results

碘霉素浓度的优化 虽然用碘霉素来诱发红斑狼疮,但增加的碘霉素浓度可导致溶血(即红细胞的溶化和血红蛋白的释放),需要避免。在林格溶液中用1μM电霉素治疗红细胞2小时足以诱发红斑狼疮,通过FACS分析(图1A)成功贴标附件-V Alexa面粉488结合和定量就证明了这一点。碘霉…

Discussion

此过程的目标是为电离磷浓度、治疗时间和细胞外葡萄糖浓度提供最佳值,这是确保成功诱导红斑气的重要因素。该协议的一个关键步骤是细胞外葡萄糖的耗竭,尽管其重要性,但文献中并未充分强调这一点。正常环状溶液(5 mM)中的糖含量对红斑酶有抑制作用。细胞外环境中的葡萄糖消耗会诱发细胞压力并激活蛋白激酶C(PKC),从而激活钙和钾通道。这导致Ca2+在细胞体空间30,31,34?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH授予R15ES030140和NSF授予CBET1903568的支持。来自罗斯工程技术学院和俄亥俄州立大学化学和生物分子工程系的财政支持也得到了认可。

Materials

96-well plate Fisher Scientific 12-565-331
Annexin V Alexa Fluor 488 – apoptosis kit Fisher Scientific A10788 Store at 4 °C
BD FACSAria II flow cytometer BD Biosciences 643177
CaCl2 Fisher Scientific C79-500
Centrifuge Millipore Sigma M7157 Model Eppendorf 5415C
Confocal fluorescence microscopy Zeiss, LSM Tek Thornwood Model LSM 510, Argon laser excited at 488 nm for taking images
Cover glasses circles Fisher Scientific 12-545-100
Disposable round bottom flow cytometry tube VWR VWRU47729-566
DMSO Sigma-Aldrich 472301-100ML
DPBS VWR Life Science SH30028.02
Glucose monohydrate Sigma-Aldrich Y0001745
HEPES Buffer (1 M) Fisher Scientific 50-751-7290 Store at 4 °C
Ionomycin calcium salt EMD Milipore Corp. 407952-1MG Dissolve in DMSO to reach 2 mM. Store at -20 °C
KCl Fisher Scientific P330-500
MgSO4 Fisher Scientific M65-500
Microcentrifuge tube Fisher Scientific 02-681-5
NaCl Fisher Scientific S271-500
Plain glass microscope slides Fisher Scientific 12-544-4
Synergy HFM microplate reader BioTek
Whole blood in ACD Zen-Bio Store at 4 °C and warm to 37 °C prior to use

Referências

  1. Bratosin, D., et al. Programmed Cell Death in Mature Erythrocytes: A Model for Investigating Death Effector Pathways Operating in the Absence of Mitochondria. Cell Death and Differentiation. 8 (12), 1143-1156 (2001).
  2. Lang, E., Lang, F. Mechanisms and Pathophysiological Significance of Eryptosis, the Suicidal Erythrocyte Death. Seminars in Cell and Developmental Biology. 39, 35-42 (2015).
  3. Garnier, M., et al. Erythrocyte Deformability in Diabetes and Erythrocyte Membrane Lipid Composition. Metabolism. 39 (8), 794-798 (1990).
  4. Verkleij, A. J., et al. The Asymmetric Distribution of Phospholipids in the Human Red Cell Membrane. A Combined Study Using Phospholipases and Freeze-Etch Electron Microscopy. Biochimica et Biophysica Acta (BBA) Biomembranes. 323 (2), 178-193 (1973).
  5. de Back, D. Z., Kostova, E. B., van Kraaij, M., van den Berg, T. K., van Bruggen, R. Of Macrophages and Red Blood Cells; A Complex Love Story. Frontiers in Physiology. 5, 9 (2014).
  6. Fadok, V. A., et al. A Receptor for Phosphatidylserine-Specific Clearance of Apoptotic Cells. Nature. 405 (6782), 85-90 (2000).
  7. Henson, P. M., Bratton, D. L., Fadok, V. A. The Phosphatidylserine Receptor: A Crucial Molecular Switch. Nature Reviews Molecular Cell Biology. 2 (8), 627-633 (2001).
  8. Messmer, U. K., Pfeilschifter, J. New Insights into the Mechanism for Clearance of Apoptotic Cells. BioEssays. 22 (10), 878-881 (2000).
  9. Basu, S., Banerjee, D., Chandra, S., Chakrabarti, A. Eryptosis in Hereditary Spherocytosis and Thalassemia: Role of Glycoconjugates. Glycoconjugate Journal. 27 (9), 717-722 (2010).
  10. Kuypers, F. A., et al. Detection of Altered Membrane Phospholipid Asymmetry in Subpopulations of Human Red Blood Cells Using Fluorescently Labeled Annexin V. Blood. 87 (3), 1179-1197 (1996).
  11. Lang, F., Lang, E., Fller, M. Physiology and Pathophysiology of Eryptosis. Transfusion Medicine and Hemotherapy. 39 (5), 308-314 (2012).
  12. Wróbel, A., Bobrowska-Hägerstrand, M., Lindqvist, C., Hägerstrand, H. Monitoring of Membrane Phospholipid Scrambling in Human Erythrocytes and K562 Cells with FM1-43 – a Comparison with Annexin V-FITC. Cellular and Molecular Biology Letters. 19 (2), 262-276 (2014).
  13. Mohandas, N., Gallagher, P. G. Red Cell Membrane: Past, Present, and Future. Blood. 112 (10), 3939-3948 (2008).
  14. Barber, L. A., Palascak, M. B., Joiner, C. H., Franco, R. S. Aminophospholipid Translocase and Phospholipid Scramblase Activities in Sickle Erythrocyte Subpopulations. British Journal of Haematology. 146 (4), 447-455 (2009).
  15. Pretorius, E., Du Plooy, J. N., Bester, J. A. A Comprehensive Review on Eryptosis. Cellular Physiology and Biochemistry. 39 (5), 1977-2000 (2016).
  16. Suzuki, J., Umeda, M., Sims, P. J., Nagata, S. Calcium-Dependent Phospholipid Scrambling by TMEM16F. Nature. 468 (7325), 834-838 (2010).
  17. Bhuyan, A. A. M., Haque, A. A., Sahu, I., Coa, H., Kormann, M. S. D., Lang, F. Inhibition of Suicidal Erythrocyte Death by Volasertib. Cellular Physiology and Biochemistry. 43 (4), 1472-1486 (2017).
  18. Chandra, R., Joshi, P. C., Bajpai, V. K., Gupta, C. M. Membrane Phospholipid Organization in Calcium-Loaded Human Erythrocytes. Biochimica et Biophysica Acta. 902 (2), 253-262 (1987).
  19. Alzoubi, K., Calabrò, S., Egler, J., Faggio, C., Lang, F. Triggering of Programmed Erythrocyte Death by Alantolactone. Toxins (Basel). 6 (12), 3596-3612 (2014).
  20. Jacobi, J., et al. Stimulation of Erythrocyte Cell Membrane Scrambling by Mitotane. Cellular Physiology and Biochemistry. 4 (33), 1516-1526 (2014).
  21. Totino, P. R. R., Daniel-Ribeiro, C. T., Ferreira-da-Cru, M. Refractoriness of Eryptotic Red Blood Cells to Plasmodium Falciparum Infection: A Putative Host Defense Mechanism Limiting Parasitaemia. PLoS One. 6 (10), e26575 (2011).
  22. Borst, O., et al. Dynamic Adhesion of Eryptotic Erythrocytes to Endothelial Cells via CXCL16/SR-PSOX. American Journal of Physiology – Cell Physiology. 302 (4), C644-C651 (2011).
  23. Tagami, T., Yanai, H., Terada, Y., Ozeki, T. Evaluation of Phosphatidylserine-Specific Peptide-Conjugated Liposomes Using a Model System of Malaria-Infected Erythrocytes. Biological and Pharmaceutical Bulletin. 38 (10), 1649-1651 (2015).
  24. Mahmud, H., et al. Suicidal Erythrocyte Death, Eryptosis, as a Novel Mechanism in Heart Failure-Associated Anaemia. Cardiovascular Research. 98 (1), 37-46 (2013).
  25. Signoretto, E., Castagna, M., Lang, F. Stimulation of Eryptosis, the Suicidal Erythrocyte Death by Piceatannol. Cellular Physiology and Biochemistry. 38 (6), 2300-2310 (2016).
  26. Lange, Y., Ye, J., Steck, T. L. Scrambling of Phospholipids Activates Red Cell Membrane Cholesterol. Bioquímica. 46 (8), 2233-2238 (2007).
  27. Lang, F., et al. Eryptosis, a Window to Systemic Disease. Cellular Physiology and Biochemistry. 22 (6), 373-380 (2008).
  28. Gil-Parrado, S., et al. Ionomycin-Activated Calpain Triggers Apoptosis. A Probable Role for Bcl-2 Family Members. Journal of Biological Chemistry. 277 (30), 27217-27226 (2002).
  29. Liu, C. M., Hermann, T. E. Characterization of Ionomycin as a Calcium Ionophore. Journal of Biological Chemistry. 253 (17), 5892-5894 (1978).
  30. Klarl, B. A., et al. Protein Kinase C Mediates Erythrocyte “Programmed Cell Death” Following Glucose Depletion. American Journal of Physiology – Cell Physiology. 290 (1), C244-C253 (2006).
  31. Danilov, Y. N., Cohen, C. M. Wheat Germ Agglutinin but Not Concanavalin A Modulates Protein Kinase C-Mediated Phosphorylation of Red Cell Skeletal Proteins. FEBS Letters. 257 (2), 431-434 (1989).
  32. Nazemidashtarjandi, S., Farnoud, A. M. Membrane Outer Leaflet Is the Primary Regulator of Membrane Damage Induced by Silica Nanoparticles in Vesicles and Erythrocytes. Environmental Science Nano. 6 (4), 1219-1232 (2019).
  33. Jaroszeski, M. J., Heller, R. . Flow Cytometry Protocols. , (2003).
  34. Ghashghaeinia, M., et al. The Impact of Erythrocyte Age on Eryptosis. British Journal of Haematology. 157 (5), 1365 (2012).
  35. Repsold, L., Joubert, A. M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. Biomed Research International. 2018 (5), 9405617 (2018).
  36. Tait, J. F., Gibson, D., Fujikawa, K. Phospholipid Binding Properties of Human Placental Anticoagulant Protein-I, a Member of the Lipocortin Family. Journal of Biological Chemistry. 264 (14), 7944-7949 (1989).
  37. Andree, H. A. M., et al. Binding of Vascular Anticoagulant α (VACα) to Planar Phospholipid Bilayers. Journal of Biological Chemistry. 265 (9), 4923-4928 (1990).
  38. Tait, J. F., Gibson, D. F., Smith, C. Measurement of the Affinity and Cooperativity of Annexin V-Membrane Binding under Conditions of Low Membrane Occupancy. Analytical Biochemistry. 329 (1), 112-119 (2004).
  39. Jiang, P., et al. Eryptosis as an Underlying Mechanism in Systemic Lupus Erythematosus-Related Anemia. Cellular Physiology and Biochemistry. 40 (6), 1391-1400 (2016).
  40. Chakrabarti, A., Halder, S., Karmakar, S. Erythrocyte and Platelet Proteomics in Hematological Disorders. Proteomics – Clinical Applications. 10 (4), 403-414 (2016).

Play Video

Citar este artigo
Bigdelou, P., Farnoud, A. M. Induction of Eryptosis in Red Blood Cells Using a Calcium Ionophore. J. Vis. Exp. (155), e60659, doi:10.3791/60659 (2020).

View Video