여기서, 우리는 금속-유기 프레임워크의 내부 또는 외부 표면에서 반응이 발생하는지 여부를 확인하기 위해 세포측량및 촉매 카보닐-ene 반응을 비교하여 금속-유기 프레임워크 촉매의 활성 부위 검증을 위한 프로토콜을 제시한다.
반응 부위에서 키랄 환경의 기공 크기 및 균질성에 의한 기판 크기 차별은 상방선택적 촉매 반응에서 금속-유기 프레임워크(MOF)-기반 촉매에서 반응 부위의 유효성 검사에 중요한 문제점이다. 시스템. 따라서, MOF 기반 촉매의 반응 부위를 검증하는 방법이 이 문제점을 조사할 필요가 있다. 기공 크기에 의한 기판 크기 차별은 두 가지 유형의 카보닐-ene 반응에서 기판 크기와 반응 속도를 비교하여 두 가지 종류의 Moofs를 달성시켰다. MOF 촉매는 두 개의 상이한 매체에서 두 반응 유형(Zn-매개 식종 및 Ti-촉매 카보닐-엔 반응)의 성능을 비교하는 데 사용되었다. 제안된 방법을 사용하여, 전체 MOF 결정이 반응에 참여하고, 결정 기공의 내부가 반응이 점성측정되었을 때 키랄 제어를 발휘하는 데 중요한 역할을 하는 것으로 관찰되었다. MOF 촉매의 키랄 환경의 균질성은 Zn 매개 식층 측정 반응 시스템에 사용되는 입자에 대한 크기 제어 방법에 의해 확립되었다. 촉매 반응에 대해 제안된 프로토콜은 MOF 기반 이기종 촉매에서 실제 반응 부위를 드러내는 기질 크기에 관계없이 촉매 표면에서 주로 반응이 발생한다는 것을 밝혔다. MOF 촉매의 반응 부위 검증을 위한 이 방법은 이질적인 enantioselective MOF 촉매를 개발하기 위한 다양한 고려사항을 시사한다.
MoF는 화학 반응에 유용한 이기종 촉매로 간주됩니다. enantioselective 촉매1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17에 대한 MoOFs의 많은 다른 보고 된 용도가 있습니다. ,18,19. 여전히, 반응이 MoFs의 내부 또는 외부 표면에 일어나는지 여부를 아직 결정되지 않았습니다. 최근 연구는 사용 가능한 표면의 활용및 감소 확산에 관한 질문을제기하고있다 20,21,22,23. 더 눈에 띄는 문제는 키랄 환경이 MOF 결정의 각 공동의 위치에 따라 달라진다는 것입니다. 이러한 키랄 환경의 이질성은 반응 생성물의 스테레오선택성이 반응부위(24)에의존한다는 것을 의미한다. 따라서, 효율적인 상항선택적 촉매를 설계하려면 반응이 일어날 위치를 식별해야 한다. 이렇게 하려면 내부를 그대로 유지하면서 내부 표면에서만 또는 MOF의 외부 표면에서만 반응이 발생하는지 확인해야 합니다. MoF의 다공성 구조 및 키랄 환경 활성 사이트를 포함하는 그들의 넓은 표면적은 enantioselective 촉매를 위해 이용될 수 있습니다. 이러한 이유로, Mofs는 고체 지지형 이기종촉매(25)의우수한 대체품이다. 이질적인 촉매로 MoIF를 사용하는 것은 그(것)들 안쪽에 반응이 일어나지 않는 경우에 재고될 필요가 있습니다. 반응 부위의 위치뿐만 아니라 공동의 크기도 중요합니다. 다공성 재료에서 캐비티의 크기는 크기에 따라 기판을 결정합니다. 공동 크기 문제25를간과 MOF 기반 촉매의 일부 보고서가 있습니다. 많은 MOF 기반 촉매는 원래 의 프레임 워크 구조3,8,13에부피가 큰 촉매 종 (예를 들어, Ti (O-i Pr)4)를 소개합니다. 부피가 큰 촉매 종은 원래의 프레임 워크 구조에서 채택 될 때 공동 크기의 변화가 있다. 부피가 큰 촉매 종으로 인한 공동 크기가 감소하면 기판이 MoF로 완전히 확산되는 것이 불가능합니다. 따라서, 이러한 경우, MOF의 캐비티 크기에 의한 기판 크기의 차별이 고려되어야 한다. MOF에 의한 촉매 반응은 종종 MOF 공동 내부에서 일어나는 반응의 증거를 지원하기 어렵게 만듭니다. 일부 연구는 MOF 캐비티보다 큰 기판이 쉽게 예상 제품으로 변환되는 것으로 나타났습니다, 이는 모순 보인다8,13. 이러한 결과는 촉매 반응을 시동하는 기질 및 촉매 부위의 작용기 간의 접촉으로 해석될 수 있다. 이 경우, 기판이 MoF로 확산될 필요가 없다; 반응은 MOF결정(26)의 표면에서 발생하며 캐비티 크기는 그 크기에 기초하여 기판의 판화의 판화의 판화에 직접적으로 관여하지 않는다.
MoF의 반응 부위를 확인하기 위해, 공지된 루이스산 촉진 카보닐-엔 반응을2를선택하였다. 3-메틸제란및 이의 컨젠터를 기질로서 사용하여, 4가지 유형의 상안성 선택적 카보닐-에네 반응을연구하였다(도1). 이전에 보고된 반응은, 두 가지 클래스로 분류되었다: Ti 시약27을이용한 Zn 시약 및 촉매 반응을 이용한 종족 측정 반응. 가장 작은 기판의 반응은Zn/KUMOF-1의 크기 측정량을 필요로 한다(KUMOF = 고려대학교 금속-유기 프레임워크); 이 반응은결정(27)내부에서 일어난다고 보고되었다. 이 방법에서는 촉매 반응에 대한Sn/KUMOF-1 및Ti/KUMOF-1에 대해 두 가지 종류의 Moof를 사용하였다. 이러한 두 가지 MOF의 뚜렷한 반응 메커니즘으로 인해, 반응 속도 대 기판 크기 간의 비교가가능하기2,28,29. Zn/KUMOF-127을 가진 카보닐-ene 반응에 대한 입자 크기의 효과는, 이전 보고서에서 볼 수 있듯이, 외부 표면의 키랄 환경이 MOF결정(24)의내측과 다르다는 것을 입증했다. 이 문서는 3가지 종류의 기판의 반응과 촉매의 2가지 클래스및 이전논문(27)에보고된 입자 크기의 효과를 비교하여 반응 부위를 결정하는 방법을 보여 준다.
(S)-KUMOF-1의합성 후, 일부 바이알의 결정은 분말처럼 보이며 촉매에 사용하기에 적합하지 않습니다. 따라서, 적절한 결정(S)-KUMOF-1을 선택해야 한다. (S)-KUMOF-1의 수율은 성공적으로 합성된 바이알만을 사용하여 계산됩니다. 용매에서 철수할 때,(S)-KUMOF-1 분해한다. 따라서 결정은 항상 젖은 상태로 유지되어야합니다. 이러?…
The authors have nothing to disclose.
이 작품은 한국국립연구재단(NRF) 기초과학 연구 프로그램 NRF-2019R1A2C4070584와 한국 정부(MSIP)의 지원을 받은 과학연구센터 NRF-2016R1A5A1009405의 지원을 받았습니다. S. Kim은 NRF 글로벌 박사 펠로우십(NRF-2018H1A2A1062013)의 지원을 받았습니다.
Acetone | Daejung | 1009-4110 | |
Analytical Balance | Sartorius | CP224S | |
Copper(II) nitrate trihydrate | Sigma Aldrich | 61194 | |
Dichloromethane | Daejung | 3030-4465 | |
Dimethyl zinc | Acros | 377241000 | |
Ethyl acetate | Daejung | 4016-4410 | |
Filter paper | Whatman | WF1-0900 | |
Methanol | Daejung | 5558-4410 | |
Microwave synthesizer | CEM | Discover SP | |
Microwave synthesizer 10 mL Vessel Accessory Kit | CEM | 909050 | |
N,N-Diethylformamide | TCI | D0506 | |
N,N-Dimethylaniline | TCI | D0665 | |
n-Hexane | Daejung | 4081-4410 | |
Normject All plastic syringe 5 mL luer tip 100/pk | Normject | A5 | |
Pasteur Pipette 150 mm | Hilgenberg | HG.3150101 | |
PTFE tape | KDY | TP-75 | |
Rotary Evaporator | Eyela | 243239 | |
Shaker | DAIHAN Scientific | DH.WSO04010 | |
Silica gel 60 (230-400 mesh) | Merck | 109385 | |
Synthetic Oven | Eyela | NDO-600ND | |
Titanium isopropoxide | Sigma Aldrich | 87560 | |
Vial (20 mL) | SamooKurex | SCV2660 | |
Vial (5 mL) | SamooKurex | SCV1545 |