Summary

大鼠复杂区域疼痛综合征I型慢性缺血后疼痛模型

Published: January 21, 2020
doi:

Summary

此处提供了一个协议,详细说明了建立慢性缺血后疼痛(CPIP)动物模型的步骤。这是一个公认的模型,模仿人类复杂的区域疼痛综合征I型。进一步评价机械和热超敏感性,以及在CPIP大鼠模型中观察到的辣椒素引起的角感行为。

Abstract

复杂的区域疼痛综合征I型(CRPS-I)是一种神经系统疾病,在患者中引起剧烈疼痛,并且仍然是一个未解决的医疗状况。然而,CRPS-I的基本机制尚未透露。众所周知,缺血/再灌注是导致CRPS-I的主要因素之一。通过长期缺血和后肢再灌注,建立了大鼠慢性缺血后疼痛(CPIP)模型,以模仿CRPS-I。CPIP模型已成为研究CRPS-I机制的公认动物模型。该协议描述了建立CPIP大鼠模型所涉及的详细程序,包括麻醉,然后是后肢缺血/再灌注。通过测量后肢的机械和热超敏感性以及急性辣椒素注射的角质反应,进一步评价大鼠CPIP模型的特征。大鼠CPIP模型表现出几种CRPS-I样的表现,包括建立后早期后肢水肿和高血症,持续热和机械过敏,以及急性辣椒素注射增加的角质反应。这些特性使其成为进一步研究CRPS-I中涉及的机制的合适动物模型。

Introduction

复杂的区域疼痛综合征 (CRPS) 引起骨折、创伤、手术、缺血或神经损伤1、2、3引起的复杂和慢性疼痛症状。CRPS分为2个子类别:CRPS类型I和II型(CRPS-I和CRPS-II)4。流行病学研究表明,CRPS的流行率约为1:20005。CRPS-I,显示没有明显的神经损伤,可能导致慢性疼痛,并极大地影响患者的生活质量。目前可用的治疗方法显示治疗效果不足。因此,CRPS-I 仍然是一个需要解决的重要且具有挑战性的临床问题。

建立模仿CRPS-I的临床前动物模型对于探索CRPS-I背后的机制至关重要。为了解决这个问题,Coderre等人设计了一个大鼠模型,将长期缺血和再灌注到后肢,以重述CRPS-I6。据了解,缺血/再灌注损伤是CRPS-I7的主要原因之一。大鼠CPIP模型表现出许多CRPS-I样的症状,包括后肢水肿和高血症在模型建立后的早期阶段,其次是持续热和机械高灵敏度6。在此模型的帮助下,建议中央疼痛敏化、外周TRPA1通道激活和活性氧物种生成等对CRPS-I8、9、10作出贡献。我们最近成功地建立了CPIP大鼠模型,并进行了背根结核(DRGs)的RNA测序,内骨对受影响的后爪11进行内脏测序。我们发现了一些潜在的机制,可能参与调解CRPS-I11的疼痛过度敏感。我们进一步确定DRG神经元中的瞬态受体电位万能1(TRPV1)通道是CRPS-I12的机械和热超灵敏度的重要原因。

在这项研究中,我们描述了建立CPIP的老鼠模型所涉及的详细程序。通过测量机械和热超敏感性及其对急性辣椒素挑战的反应能力,我们进一步评估了大鼠CPIP模型。提出大鼠CPIP模型是进一步研究CRPS-I中相关机制的可靠动物模型。

Protocol

动物规程经浙江医科大学动物伦理委员会批准。 1. 动物 从上海实验室动物中心获得雄性斯普拉格-道利(SD)大鼠(280~320克,8-10周龄)。在浙江中医药大学动物实验室动物中心饲养动物。请注意,繁殖条件应包括 12 h/ 2h 的光/暗周期,并保持温度稳定在 24°C。提供水和食物。请注意,本研究共使用了48只大鼠。有一点,在这个模型中,我们需要观察整个过程中的…

Representative Results

在脚踝上放置O环后,叶侧后爪皮肤出现青紫,指示组织缺氧(图1A)。切割O环后,叶侧后爪开始充满血液,并表现出强健的肿胀,这显示了高血症的强烈迹象(图1A)。爪子肿胀逐渐减少,并在缺血/再灌注程序后恢复正常的48小时(与Sidak的双向ANOVA,即位测试,图1B)。所有这些迹象都符合?…

Discussion

该协议描述了通过在大鼠后肢应用缺血/再灌注来建立大鼠CPIP模型的详细方法。它涉及评估后肢外观,水肿,机械/热过敏性,和急性角质行为,以回应辣椒素注射。

肢体缺血/再灌注是导致CRPS-I在人类患者12的常见因素。该协议描述了如何建立大鼠CPIP模型,这是一个常用的动物模型来概括人类CRPS-I6。在麻醉下,在大鼠的后肢诱导了缺血,在…

Declarações

The authors have nothing to disclose.

Acknowledgements

该项目由中国国家自然科学基金(81873365和81603676)、浙江省杰出青年自然科学基金(LR17H270001)和浙江中医药大学()资助。Q2019J01, 2018ZY37, 2018ZY19).

Materials

1.5 ml Eppendorf tube Eppendorf 22431021
DMSO Sigma-Aldrich D1435
Capsaicin APEXBIO A3278
Digital caliper Meinaite NA
O-ring O-Rings West Nitrile 70 Durometer 7/32 in.
internal diameter
Plantar Test Apparatus UGO Basile, Italy 37370
von Frey filaments UGO Basile, Italy NC12775

Referências

  1. Goh, E. L., Chidambaram, S., Ma, D. Complex regional pain syndrome: a recent update. Burns, Trauma. 5 (1), 2 (2017).
  2. Birklein, F., Ajit, S. K., Goebel, A., Rsgm, P., Sommer, C. Complex regional pain syndrome – phenotypic characteristics and potential biomarkers. Nature Reviews Neurology. 14 (5), (2018).
  3. Shim, H., Rose, J., Halle, S., Shekane, P. Complex regional pain syndrome: a narrative review for the practising clinician. British Journal of Anaesthesia. , (2019).
  4. Urits, I., Shen, A. H., Jones, M. R., Viswanath, O., Kaye, A. D. Complex Regional Pain Syndrome, Current Concepts and Treatment Options. Current Pain, Headache Reports. 22 (2), 10 (2018).
  5. Helyes, Z., et al. Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1-induced mechanisms. Proceedings of National Academy Sciences of the United States of America. 116 (26), 13067-13076 (2019).
  6. Coderre, T. J., Xanthos, D. N., Francis, L., Bennett, G. J. Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-Type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain. 112 (1), 94-105 (2004).
  7. Coderre, T. J., Bennett, G. J. A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): pain due to deep-tissue microvascular pathology. Pain Medicine. 11 (8), 1224-1238 (2010).
  8. Klafke, J. Z., et al. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms. Pflugers Archiv European Journal of Physiology. 468 (2), 229-241 (2015).
  9. Tang, Y., et al. Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behavioral Immunology. 68, 248-260 (2018).
  10. Kim, J. H., Kim, Y. C., Nahm, F. S., Lee, P. B. The Therapeutic Effect of Vitamin C in an Animal Model of Complex Regional Pain Syndrome Produced by Prolonged Hindpaw Ischemia-Reperfusion in Rats. International Journal of Medical Sciences. 14 (1), 97-101 (2017).
  11. Yin, C., et al. Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain. Journal of Pain Research. 12, 1201-1216 (2019).
  12. Hu, Q., et al. TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1. Frontiers in Pharmacology. 10, 453 (2019).
  13. Dixon, W. J. Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology. 20, 441-462 (1980).
  14. Chai, W., et al. Electroacupuncture Alleviates Pain Responses and Inflammation in a Rat Model of Acute Gout Arthritis. Evidence-Based Complementary and Alternative Medicine. 2018, 2598975 (2018).
  15. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods. 53 (1), 55-63 (1994).
  16. Fang, J. Q., et al. Parameter-specific analgesic effects of electroacupuncture mediated by degree of regulation TRPV1 and P2X3 in inflammatory pain in rats. Life Sciences. 200, 69-80 (2018).
  17. Tai, Y., et al. Involvement of Transient Receptor Potential Cation Channel Member A1 activation in the irritation and pain response elicited by skin-lightening reagent hydroquinone. Scientific Reports. 7 (1), 7532 (2017).
  18. Liu, B., et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain. 154 (10), 2169-2177 (2013).
  19. Liu, B., et al. Oxidized Phospholipid OxPAPC Activates TRPA1 and Contributes to Chronic Inflammatory Pain in Mice. PLoS One. 11 (11), 0165200 (2016).
  20. Terkelsen, A. J., Gierthmuhlen, J., Finnerup, N. B., Hojlund, A. P., Jensen, T. S. Bilateral hypersensitivity to capsaicin, thermal, and mechanical stimuli in unilateral complex regional pain syndrome. Anesthesiology. 120 (5), 1225-1236 (2014).
  21. Drummond, P. D., Morellini, N., Finch, P. M., Birklein, F., Knudsen, L. F. Complex regional pain syndrome: intradermal injection of phenylephrine evokes pain and hyperalgesia in a subgroup of patients with upregulated alpha1-adrenoceptors on dermal nerves. Pain. 159 (11), 2296-2305 (2018).
  22. Minert, A., Gabay, E., Dominguez, C., Wiesenfeld-Hallin, Z., Devor, M. Spontaneous pain following spinal nerve injury in mice. Experimental Neurology. 206 (2), 220-230 (2007).
  23. Kingery, W. S., et al. Capsaicin sensitive afferents mediate the development of heat hyperalgesia and hindpaw edema after sciatic section in rats. Neuroscience Letters. 318 (1), 39-43 (2002).
  24. Xu, J., et al. Activation of cannabinoid receptor 2 attenuates mechanical allodynia and neuroinflammatory responses in a chronic post-ischemic pain model of complex regional pain syndrome type I in rats. European Journal of Neuroscience. 44 (12), 3046-3055 (2016).
  25. Coderre, T. J., Xanthos, D. N., Francis, L., Bennett, G. J. Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain. 112 (1-2), 94-105 (2004).
  26. Weissmann, R., Uziel, Y. Pediatric complex regional pain syndrome: a review. Pediatric Rheumatology Online Journal. 14 (1), 29 (2016).
  27. Kim, H., Lee, C. H., Kim, S. H., Kim, Y. D. Epidemiology of complex regional pain syndrome in Korea: An electronic population health data study. PLoS One. 13 (6), 0198147 (2018).
  28. Tang, C., et al. Sex differences in complex regional pain syndrome type I (CRPS-I) in mice. Journal of Pain Research. 10, 1811-1819 (2017).
check_url/pt/60562?article_type=t

Play Video

Citar este artigo
Hu, Q., Zheng, X., Chen, R., Liu, B., Tai, Y., Shao, X., Fang, J., Liu, B. Chronic Post-Ischemia Pain Model for Complex Regional Pain Syndrome Type-I in Rats. J. Vis. Exp. (155), e60562, doi:10.3791/60562 (2020).

View Video