Краситель-сенсибилизированные солнечные батареи были solvated RTILs; с использованием оптимизированных эмпирических потенциалов, моделирование молекулярной динамики было применено для расчета вибрационных свойств. Полученные вибрационные спектры сравнивались с экспериментальной и аб инитио молекулярной динамикой; различные эмпирические потенциальные спектры показывают, как параметризация частичного заряда заряда ионной жидкости влияет на вибрационный спектр.
Точное молекулярное моделирование прогнозирования вибрационных спектров и других структурных, энергетических и спектральных характеристик фотоактивных металлооксидных поверхностей при контакте со светопоглощающими красителями является постоянной тернистой и неуловимой задачей в физической химии. Имея это в виду, молекулярно-динамика (MD) моделирование были выполнены с помощью оптимизированных эмпирических потенциалов для хорошо репрезентативных и прототипных красителей чувствительных солнечных батарей (DSC) solvated широко изучены комнатной температуры я оническая жидкость (RTIL), под видом «bmim»(«NTf2»– RTIL, solvating N719-sensitizing красителя адсорана на 101 анатазе-титании. При этом, важные идеи были почерпнуты в том, как с помощью RTIL как электролитическое отверстие принимает модулирует динамические и вибрационные свойства n719 красителя, оценивая спектры для DSC фото-активный интерфейс через Fourier преобразования масс-взвешенной функции автокорреляции скорости от MD. Приобретенные вибрационные спектры сравнивались с экспериментальными спектрами и те, которые были взяты из молекулярной динамики ab initio (AIMD); в частности, различные эмпирически-потенциальные спектры, генерируемые MD, дают представление о том, как параметризация частичного заряда заряда ионной жидкости влияет на вибрационный спектр. В любом случае, тщательная установка эмпирических моделей силового поля была показана эффективным инструментом в обработке вибрационных свойств DSC, при проверке AIMD и эксперимента.
В красителя чувствительных солнечных элементов (DSCs), оптический разрыв полосы полупроводников мостима светопоглощающей, или сенсибилизации, красителя. DSCs требуют постоянной подзарядки: таким образом, электролит redox имеет важное значение для содействия этой постоянной поставки заряда (как правило, в виде I–/ I3 –, в органических растворителя). Это облегчает прохождение отверстий от сенсибилизирующего красителя к электролиту, с впрыскиваемыми фото-возбужденных электронов в металлический оксид субстрат, проходящий через к внешней цепи, с возможной рекомбинации происходит в катоде1. Важнейший аспект, лежащий в основе позитивного взгляда DSCs на широкий спектр приложений реального мира, проистекает из их простого производства, без необходимости в сырье с высокой чистотой; это резко контрастирует с высокой капитальными затратами и ультра-чистотой, необходимой для кремниевых фотоэлектрических. В любом случае, перспектива существенного улучшения сроков работы и продолжительности жизни DSCs путем замены менее стабильных электролитов с комнатной температуры ионных жидкостей (RTILs), имеющих низкую волатильность показывает значительные перспективы. Твердые физические свойства RTILs в сочетании с их жидкими электрическими свойствами (такими как низкая токсичность, воспламеняемость и волатильность)1 приводят их к тому, что они представляют собой довольно отличные кандидатские электролиты для использования в приложениях DSC.
Учитывая такие перспективы для RTILs в DSCs, это не удивительно, что в последние годы, наблюдается значительный рост активности в изучении DSC-прототип N719-хромофора / титании интерфейсы с RTILs. В частности, была проведена важная работа по таким системам2,3,4,5,которые учитывают широкий набор физико-химических процессов, в том числе кинетику заряда в красителе2,5,механистические шаги динамики электрон-дыры и передачи3,и, конечно же, эффекты титанийского субстрата на эти и прочие, процессы4.
Теперь, имея в виду впечатляющие достижения в DFT основе молекулярной моделирования, в частности AIMD6, как очень полезный прототип инструмента дизайна в материаловедении и особенно для DSCs7,8,9,10,11, с критической оценкой оптимального функционального отбора, имеющих жизненно важное значение8,9, МЕТОДы AIMD оказались очень полезными ранее в тщательном довольно значительном дисперсии и явном воздействии растворения RTIL на структуру красителя, режимы адсорбции и колебательные свойства на поверхностях DSC-полупроводника. В частности, принятие AIMD привело к некоторому успеху в достижении разумного, полуколичественного захвата и прогнозирования важных электронных свойств, таких как разрыв в диапазоне, а также структурная привязка13и вибрационные спектры14В рефери. 12-14, AIMD моделирования были выполнены широко на фото-активный N719-хромофорный краситель связан с (101) анатаза-титания поверхности, оценивая как электронные свойства и структурные свойства в присутствии обоих «bmim»+(NTf2)–12,13и «имим»+(Я)–14RTILs, в дополнение к вибрационным спектрам для случая «bmim»+(Я)–14. В частности, жесткость поверхности полупроводника15, помимо присущей ей сравнительной фотоактивности, привело к тому, что поверхность слегка изменилась в рамках моделирования AIMD, что делает (101) интерфейсы анатазы12,13,14подходящий выбор. Как показывает рефери 12, среднее расстояние между катионами и поверхностью снизилось примерно на 0,5 евро, среднее разделение между катионами и анионами уменьшилось на 0,6 евро, а заметное изменение РТИЛ в первом слое вокруг красителя, где катион ы был на авере возраст 1,5 й дальше от центра красителя, были непосредственно вызваны явными взаимодействиями дисперсии в RTIL-solvated систем. Нефизическое извивание конфигурации адсорбирования N719 также было результатом введения явных эффектов дисперсии в vacuo. В ref. 13 был проведен анализ того, повлияли ли эти структурные эффекты явного разведения RTIL и функционального отбора на поведение DSSCs, и был задна к выводу, что как явное разрознение, так и лечение дисперсии очень важны. В ref. 14, с высококачественными экспериментальными вибрационно-спектральными данными других групп под рукой, конкретные эффекты систематически сопосамывали на обоих явных «bmim»+(Я)–раздевание и точное обращение с дисперсией, установленные в рефери. 12 и 13 о воспроизведении основных спектральных режимов; это привело к выводу, что явное разлажение имеет важное значение, наряду с точным лечением дисперсионных взаимодействий, вторя более ранним выводам как структурных, так и динамических свойств в случае AIMD моделирования катализаторов в явном растворителе16. Действительно, Mosconi et al. также провели впечатляющую оценку явного эффекта растворения на DFT-режиме моделирования DSC17. Бахерс и др.18изучал экспериментальные спектры поглощения для красителей вместе с соответствующими спектрами на уровне TD-DFT; эти спектры TD-DFT очень хорошо согласовывались с точки зрения их вычисленных переходов с их экспериментальными коллегами. Кроме того, в нескольких растворителях преат и др. в нескольких растворителях были изучены спектры пирролидина (PYR)19, обеспечивая значительное понимание геометрических и электронных структур красителей, и вывод адекватных структурных изменений, которые служат для оптимизации свойств PYR основе DSSCs – дух моделирования под руководством / рационализированный “молекулярный дизайн”, действительно.
Четко установив важный вклад как DFT, так и AIMD в точное моделирование свойств и функций DSCs, в том числе такие важные технические вопросы, как явное разлажение и соответствующее лечение дисперсионных взаимодействий со структурными, электронными и вибрационными точками7,9,10,11,12,13,теперь– в настоящей работы – акцент обращается к прагматическому вопросу о том, насколько хорошо эмпирически-потенциальные подходы могут быть адаптированы для решения уместных и разумных прогнозов структурных и колебательных свойств таких прототипных систем DSC, принимая краситель N719, адсорированный на анатазе (101) в «bmim»и«NTf2»– RTIL как случай в точке. Это важно не только из-за большого корпуса силового молекулярно-симуляционного деятельности и методологического оборудования, доступного для решения DSC моделирования7, и металлооксидных поверхностей более широко, но и из-за их ошеломляюще сниженной вычислительной стоимости по отношению к DFT основе подходов, а также возможность очень эффективного соединения с предвзятым выборки подходов к захвату более эффективнофазно фазового пространства и структурных виску-эволюции, доминируют твердые физические свойства при температуре окружающей среды. Поэтому, мотивированный этим открытым вопросом оценки и оптимизации силовых подходов, информированных как DFT и AIMD, так и экспериментальных данных для вибрационных спектров14,мы обращаемся к насущной задаче оценки эмпирического потенциала производительности при вибрационно-спектрном прогнозировании от MD, используя масс-взвешенные четыре трансформансы атокорьев n719 dye’s autocorrelation function (F). Одной из ключевых проблем является то, как различные параметры частичного заряда RTIL могут повлиять на вибрационно-спектра прогноз, и особое внимание было уделено этому вопросу, а также более широкой задачей пошива силовых полей для оптимального прогнозирования спектрального режима по отношению к эксперименту и AIMD20.
Методы моделирования Ab initio являются дорогостоящими в выполнении и, следовательно, для выполнения моделирования на гораздо более длительные сроки потребует использования эмпирических силовых полей, по крайней мере некоторые из системы DSC. С этой целью была создана эквивалентная атоми?…
The authors have nothing to disclose.
Авторы благодарят профессора Дэвида Кокера за полезные дискуссии и Научный фонд Ирландии (SFI) за предоставление высокопроизводительных вычислительных ресурсов. Это исследование было поддержано двусторонней схемой финансирования SFI-NSFC (грантовый номер SFI/17/NSFC/5229), а также Программой исследований институтов третьего уровня (PRTLI) Cycle 5, совместно финансируемой Европейским фондом регионального развития.
This was a molecular simulation, so no experimental equipment was used. | |||
The name of the software was DL-POLY (the 'Classic' version of which is available under GnuPublic Licence, via sourceforge) |