Summary

Determinação de localização de estimulação usando um digitalizador 3D com estimulação transcraniana de alta definição da corrente direta

Published: December 20, 2019
doi:

Summary

Apresentado aqui é um protocolo para alcançar maior precisão na determinação da localização da estimulação, combinando um digitalizador 3D com estimulação transcraniana de alta definição da corrente direta.

Abstract

A abundância de dados de neuroimagem e o rápido desenvolvimento do aprendizado de máquina tornaram possível investigar os padrões de ativação cerebral. No entanto, evidências causais de ativação da área cerebral levando a um comportamento é muitas vezes deixado falta. Estimulação transcraniana de corrente direta (tDCS), que pode alterar temporariamente a excitabilidade e atividade corticais cerebrais, é uma ferramenta neurofisiológica não invasiva usada para estudar relações causais no cérebro humano. Estimulação de corrente direta transcraniana de alta definição (HD-tDCS) é uma técnica de estimulação cerebral não invasiva (NIBS) que produz uma corrente mais focal em comparação com o tDCS convencional. Tradicionalmente, a localização da estimulação tem sido aproximadamente determinada através do sistema 10-20 EEG, porque determinar pontos precisos de estimulação pode ser difícil. Este protocolo usa um digitalizador 3D com HD-tDCS para aumentar a precisão na determinação dos pontos de estimulação. O método é demonstrado usando um digitalizador 3D para localização mais precisa de pontos de estimulação na junção temporo-parietal direita (rTPJ).

Introduction

A estimulação transcraniana de corrente direta (tDCS) é uma técnica não invasiva que modula a excitabilidade cortical com correntes diretas fracas sobre o couro cabeludo. Tem como objetivo estabelecer a causalidade entre excitabilidade neural e comportamento em seres humanos saudáveis1,2,3. Além disso, como uma ferramenta de neuroreabilitação motora, tDCS é amplamente utilizado no tratamento da doença de Parkinson, acidente vascular cerebral e paralisia cerebral4. Evidências existentes sugerem que o tDCS tradicional baseado em almofadas produz fluxo atual através de uma região cerebral relativamente maior5,6,7. Estimulação de alta definição transcraniana de corrente direta (HD-tDCS), com o eletrodo de anel central sentado sobre uma região corticana alvo cercada por quatro eletrodos de retorno8,9,aumenta a focalidade circunscrevendo quatro áreas de anel5,10. Além disso, as mudanças na excitabilidade do cérebro induzida sh-tDCS têm magnitudes significativamente maiores e durações mais longas do que as geradas pelo tDCS tradicional7,11. Portanto, o HD-tDCS é amplamente utilizado na pesquisa7,11.

Estimulação cerebral não invasiva (NIBS) requer métodos especializados para garantir que um local de estimulação está presente nos sistemas padrão MNI e Talairach12. A neuronavegação é uma técnica que permite mapear interações entre estímulos transcranianos e o cérebro humano. Seus dados de visualização e imagem 3D são usados para estimulação precisa. Tanto no tDCS como no HD-tDCS, uma avaliação comum dos locais de estimulação no couro cabeludo é tipicamente o sistema EEG 10-2013,14. Esta medida é amplamente utilizada para colocar as almofadas tDCS e portadores de optodes para espectroscopia infravermelha funcional (fNIRS) na fase inicial13,14,15.

Determinar os pontos precisos de estimulação ao usar o sistema 10-20 pode ser difícil (por exemplo, na junção temporo-parietal [TPJ]). A melhor maneira de resolver isso é obter imagens estruturais dos participantes usando ressonância magnética (RM), em seguida, obter a posição exata da sonda, combinando pontos-alvo para suas imagens estruturais usando produtos digitalizantes15. MRI fornece boa resolução espacial, mas é caro para usar15,16,17. Além disso, algumas participantes (por exemplo, aquelas com implantes metálicos, claustrofóbicos, gestantes, etc.) não podem ser submetidas a scanners de ressonância magnética. Portanto, há uma forte necessidade de uma maneira conveniente e eficiente de superar as limitações acima mencionadas e aumentar a precisão na determinação de pontos de estimulação.

Este protocolo utiliza um digitalizador 3D para superar essas limitações. Em comparação com a ressonância magnética, as principais vantagens de um digitalizador 3D são baixos custos, aplicação simples e portabilidade. Ele combina cinco pontos de referência (ou seja, Cz, Fpz, Oz, ponto pré-auricular esquerdo e ponto pré-auricular direito) de indivíduos com informações de localização dos pontos de estimulação alvo. Em seguida, ele produz uma posição 3D de eletrodos na cabeça do sujeito e estima suas posições corticais, ajustando-se com os vastos dados da imagem estrutural12,15. Esse método de registro probabilístico permite a apresentação de dados de mapeamento transcraniano no sistema de coordenação do MNI sem registrar as imagens de ressonância magnética de um sujeito. A abordagem gera rótulos automáticos anatômicos e áreas de Brodmann11.

O digitalizador 3D, usado para marcar coordenadas espaciais com base nos dados de imagens estruturais, foi usado pela primeira vez para determinar a posição dos optodes na pesquisa fNIRS18. Para aqueles que usam HD-tDCS, um digitalizador 3D quebra os pontos de estimulação finito do sistema EEG 10-20. A distância dos quatro eletrodos de retorno e eletrodo central é flexível e pode ser ajustada conforme necessário. Ao utilizar o digitalizador 3D com este protocolo, foram obtidas as coordenadas do rTPJ, o que está além do sistema 10-20. Também são mostrados os procedimentos para segmentação e estímulo à junção temporo-parietal direita (rTPJ) do cérebro humano.

Protocol

O protocolo atende às diretrizes do Conselho de Revisão Institucional da Southwest University. 1. Determinação da localização da estimulação Reveja a literatura e confirme o local de estimulação (aqui, o rTPJ)19,20,21. 2. Preparação do eletrodo segurando cap NOTA:As seguintes etapas são mostradas na <st…

Representative Results

Utilizando os métodos apresentados, foram determinadas as coordenadas do rTPJ, o que requer pontos de estimulação além do sistema 10-20. Primeiramente, a circunferência do headform deve ser similar à cabeça real. Aqui, o comprimento da nasion à inionação do headform era ~36 cm, e o comprimento entre o preauricular bilateral era ~37 cm. As etapas para a produção da tampa de eletrodo guiam as posições de medição do sistema 10-20. Aqui, Nz, Iz, Cz, Fpz, Oz, Pz, T8, T7, C4, P8, O2,…

Discussion

Em comparação com o tDCS tradicional, o HD-tDCS aumenta a especificidade da estimulação. Locais típicos de estimulação são muitas vezes baseados no sistema 10-20 EEG. No entanto, determinar os pontos precisos de estimulação além deste sistema pode ser difícil. Este artigo combina um digitalizador 3D com HD-tDCS para determinar pontos de estimulação além do sistema 10-20. É importante definir claramente as etapas e precauções para fazer e usar a tampa do elétrodo em tais casos.

<p class="jove_conten…

Declarações

The authors have nothing to disclose.

Acknowledgements

Este estudo foi apoiado pela National Natural Science Foundation of China (31972906), Programa de Empreendedorismo e Inovação para Chongqing Overseas Returned Scholars (cx2017049), Fundos de Pesquisa Fundamentais para Universidades Centrais (SWU1809003), Aberto Fundo de Pesquisa do Laboratório-Chave de Saúde Mental, Instituto de Psicologia, Academia Chinesa de Ciências (KLMH2019K05), Projetos de Inovação em Pesquisa de Estudante de Pós-Graduação em Chongqing (CYS19117) e os Fundos do Programa de Pesquisa da Inovação Colaborativa Centro de Avaliação para a Qualidade da Educação Básica na Universidade Normal de Pequim (2016-06-014-BZK01, SCSM-2016A2-15003 e JCXQ-C-LA-1). Gostaríamos de agradecer ao Prof. Ofir Turel por suas sugestões sobre o rascunho inicial deste manuscrito.

Materials

1X1 Low Intensity transcranial DC Stimulator Soterix Medical 1300A
3-dimensional Polhemus-Patriot Digitizer POLHEMUS 1A0453-001 PATRIOT system component
4X1 Multi-Channel Stimulation Interface Soterix Medical 4X1-C3
Dell desktop computer Dell CRFC4J2 Master computer to run 3D digitizer application

Referências

  1. Nitsche, M. A., Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology. 527, 633-639 (2000).
  2. Sellaro, R., Nitsche, M. A., Colzato, L. S. The stimulated social brain: effects of transcranial direct current stimulation on social cognition. Annals of the New York Academy of Sciences. 1369 (1), 218-239 (2016).
  3. Chen, W., et al. Sex-based differences in right dorsolateral prefrontal cortex roles in fairness norm compliance. Behavioural Brain Research. 361, 104-112 (2019).
  4. Sánchez-Kuhn, A., Pérez-Fernández, C., Cánovas, R., Flores, P., Sánchez-Santed, F. Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. BioMedical Engineering Online. 16 (1), 76 (2017).
  5. Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., Parra, L. C. Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering. 8 (4), 046011 (2011).
  6. Seo, H., Kim, H. I., Jun, S. C. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study. Science Report. 7, 40612 (2017).
  7. Datta, A., et al. Gyri -precise head model of transcranial DC stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation. 2, 201-207 (2009).
  8. Turski, C. A., et al. Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restorative Neurology and Neuroscience. 35 (6), 631-642 (2017).
  9. Datta, A., Elwassif, M., Battaglia, F., Bikson, M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering. 5 (2), 163-174 (2008).
  10. Edwards, D., et al. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high definition tDCS. Neuroimage. 74, 266-275 (2013).
  11. Kuo, H. I., et al. Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study. Brain Stimulation. 6 (4), 644-648 (2013).
  12. Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage. 27 (4), 842-851 (2005).
  13. DaSilva, A. F., Volz, M. S., Bikson, M., Fregni, F. Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments. (51), (2011).
  14. Villamar, M. F., et al. Technique and considerations in the use of 4×1 ring high-definition transcranial direct current stimulation (HD-tDCS). Journal of Visualized Experiments. (77), e50309 (2013).
  15. Jasinska, K. K., Guei, S. Neuroimaging Field Methods Using Functional Near Infrared Spectroscopy (NIRS) Neuroimaging to Study Global Child Development: Rural Sub-Saharan Africa. Journal of Visualized Experiments. (132), (2018).
  16. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature. 453 (7197), 869-878 (2008).
  17. Glover, G. H. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America. 22 (2), 133-139 (2011).
  18. Zhu, H. . The easy and stable marking method for registering fNIRS data to MNI space by using 10-20 system. , (2012).
  19. Young, L., Saxe, R. An fMRI Investigation of Spontaneous Mental State Inference for Moral Judgment. Journal of Cognitive Neuroscience. 21, 1396-1405 (2009).
  20. Young, L., Cushman, F., Hause, M., Saxe, R. The neural basis of the interaction between theory of mind and moral judgment. Proceedings of the National Academy of Sciences USA. 104, 8235-8240 (2007).
  21. Jurcak, V., Tsuzuki, D., Dan, I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 34 (4), 1600-1611 (2007).
  22. Schestatsky, P., Morales-Quezada, L., Fregni, F. Simultaneous EEG monitoring during transcranial direct current stimulation. Journal of Visualized Experiments. (76), (2013).
  23. Klem, G. H., Lüders, H. O., Jasper, H. H., Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Cleveland Clinic Foundation. Electroencephalography & Clinical Neurophysiology Supplement. 52, 3 (1999).
  24. Society, A. E. Guideline thirteen: Guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology. 1, 111-113 (1994).
  25. Oostenveld, R., Praamstrac, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology. 112, 713-719 (2001).
  26. Saturnino, G. B., Antunes, A., Thielscher, A. On the importance of electrode parameters for shaping electric field patterns generated by tDCS. Neuroimage. 120, 25-35 (2015).
  27. . L. Real-time Recording System of Visual Head 3D Positioning Information (VPen). China patent. , (2014).
  28. Ye, J. C., Tak, S., Jang, K. E., Jung, J., Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 44 (2), 428-447 (2009).
  29. Decety, J., Lamm, C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist. 13 (6), 580-593 (2007).
  30. Villamar, M. F., et al. Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation. The Journal of Pain. 14 (4), 371-383 (2013).
  31. Borckardt, J. J., et al. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. The Journal of Pain. 13 (2), 112-120 (2012).

Play Video

Citar este artigo
Chen, W., Chen, R., He, Q. Stimulation Location Determination using a 3D Digitizer with High-Definition Transcranial Direct Current Stimulation. J. Vis. Exp. (154), e60263, doi:10.3791/60263 (2019).

View Video